Flaring off natural gas, a big carbon footprint with no benefits.

This is a satellite photo of a mostly clear night over U.S. (There are a few clouds over eastern U.S.) It shows clearly where the big cities are, and how empty the western half of U.S. is compared to the eastern half. From this we can see and guess the size of the major metropolitan areas. Looking over North Dakota there seems to be a city of about half a million people judging from the light. But North Dakota has no big cities! What is going on?

The light area below is here_______V______________________________________________

While North Dakota is the second largest oil producing state in the nation it produces very little natural gas, only what comes as a bi-product of oil recovery, in fact it is so little that the government has let the oil companies flare off the gas rather than recover it and us it for supplying the country with more natural gas. Since the government has put a halt to build the Keystone and other pipelines, the oil out of these wells are shipped by truck and train to refineries mostly in Texas at at least three times the cost (read energy usage) of a pipeline, the government is not concerned about energy usage, only control of the production means. Granted it is only a pittance in the grand scheme of energy use, only 291 million cubic feet of natural gas was officially flared off per day in Oct 2023, but it is growing as oil production is climbing.

How much is 291 million cubic feet of natural per day that is flared off? It corresponds to a little over 300 billion BTU/day, not much, but enough to supply gas for over 5 million gas stoves in normal family use. The Government is trying to prohibit any new gas stoves in new construction. This again proves that their main concern is not energy use, since it is o.k. to flare off large amounts of gas but not using it for superior cooking, it shows that their concern is people control, not energy conservation or even common sense.

Why Thorium? 31. Molten salt Thorium Reactors will produce electrical energy at about 5 cents per kWh.

Produces electrical energy at about 5 cents per kWh.

The United States sources of Electricity generation is one third from Natural Gas, one third from Coal and one third from non fossil fuel sources.

The cost to produce electricity with Thorium nuclear power should be about 40% less than Advanced Nuclear and about 30 % less than from Coal (with scrubbers)  Solar generation is about 4 times more expensive (without subsidies) in the North-east, where people live. New Mexico, Arizona and California are suitable for cheap Solar power, but they lack Hydropower storage. Wind power is cheaper when the wind blows, but base generation capacity has to be there even when the wind doesn’t blow, so the only gain from wind power is to lessen the mining or extraction of carbon. In addition, wind power kills birds, the free yearly quota of allowable Bald Eagle kills was upped from 1200 to 4200 during the Obama administration. (https://lenbilen.com/2019/04/12/what-is-more-precious-babies-eagles-or-fighting-climate-change/). Golden Eagles and a few other rare birds has a quarter of a million dollar fine associated with their kills. If wind power is increased without finding a solution to the bird kills, whole species may go extinct. Solar power is, and will be used in special applications such as on roofs for backup and peak power assist. Today’s solar panels are easily destroyed by a single hailstorm. Hydroelectric power is for all practical purpose maxed out, so nearly all future increase must come from Coal, Natural Gas, Petroleum or Nuclear. The world experience on installing wind and solar energy is that it is expensive. See fig:

The residential cost of electricity increases as the proportion of total electricity demand is supplied by wind and solar. Part of the cost is in power distribution. Molten Salt Thorium Nuclear Generators is the way to go. It doesn’t depend on sun, wind and water to produce electricity where the need is.

Why Thorium? 30. The source material problem with Thorium.

Thr problem with Thorium is that it is classified as source material the same as Uranium. Natural Uranium is fissile in a heavy water moderated reactor, Thorium is only slightly radioactive, and should be regulated like all other radioactive products, like household smoke detectors and medical isotopes.

Congress should immediately declassify Thorium as a source material. This would again enable U.S. to mine rare earth materials like China and the rest of the world.

The video speaks for itself and is well worth watching. Especially listen at 15:30 min why molten salt reactors were abandoned.

Of the recorded temperature increase between 1980 and 2022, how much is attributable to CO2, and how much to other greenhouse gases?

By far, the strongest greenhouse gas is water vapor, not because it is very strong of itself, but it absorbs nearly all outgoing energy in the infrared spectrum except in the so called atmospheric window, where it only partially absorbs. Yet water vapor is missing from the IPCC AR6 chart seen here:

IPCC has consistently treated the effect of greenhouse gasses as additive, but it is impossible to absorb more than 100% of all emitted energy for a given wavelength. This leads to an overestimation of absorption when 2 or more gasses are present. For example, if CO2 absorbs 90% of available energy at 13 μm and water vapor another 50%, the sum is 90% + (1 -0.9} * 0.5 = 95%, not 140%

This will change the relative importance of greenhouse gasses drastically so it must be tested against reality. We now have a good global satellite temperature record from 1980 to 2022 or 43 years:

During this time the temperature rise was 0.5 C, which translates to 2.375 W/m2 ERF

Water vapor.

This is a good chart to see the relative importance of all major greenhouse gasses:

It is to be noted that water vapor also absorbs the incoming solar radiation in certain wavelengths, but solar influx is assumed to be constant.

When average temperature rises 0.5 C, the possible absorption rises by 2.375 W/m2 minus the energy that escapes through the atmospheric window.Water vapor through saturation: is responsible for all of this increase except where other gasses also absorb in the atmospheric window, and in the atmospheric window the absorption must be proportionally shared, subject to the 100% absorption limitation.The atmospheric window is about 26% of all the emitted radiation so net water absorption is 0.74 * 2.375 = 1.6 W.m2 or 0.34 C. However, the relative humidity is also decreasing, see picture:

Between 1980 and 2022 the net humidity increase is 3.6% minus 0.75% relative humidity for a net increase of 3.54%. This increase only matters in the atmospheric window which is on average 25% saturated, so the total increase from water vapor increase is 0.26 * 2.375 * 0.25 * 0.9925 = 0.15 W/m2 or 0.03 C., to be added to the total before increase in humidity.This means that for a 0.5C temperature increase between 1980 and 2022 the total sensitivity to water vapor is 1.75 W/m2 or 0.37 C

Carbon dioxide

CO2 is the strongest greenhouse gas after water vapor. The only wavelength band that is meaningful is 13 to 17.4 μm and absorption occurs from both CO2 and water vapor. Since they exist together, the effect of each of them must be proportionally allocated, or the sum of them added would exceed 100%

Between 1980 and 2022 the CO2 levels rose from 335 ppm to 415 ppm or 24% increase. The temperature increase 0.5 C. The net temperature increase or ERF in the 13 to 17.4 μm band is 0.035C or +0.17 W/m2 for the water vapor and 0.04C or +0.19 W/m2 for the CO2. To see how the calculation was made, go to Appendix 1.

Methane.

Methane gas is created from a variety of sources, both man made and natural. See pie chart

The good thing about methane is that its lifetime in the atmosphere is only 10 to 15 years, and the real contribution to climate change is only 1/5th of what is commonly advertised, since iits absorption bands occur together with partly saturated absorption from water vapor. See appendix 2.

In 1980 the CH4 concentration was 1.6 ppm and will be 2.0 ppm in 2022 which results in an increase of the greenhouse effect of 0.035 C or 0.17 W/m2 ERF from rising levels of Methane since 1980.

N2O.

Atmospheric N2O levels averaged 336 ppb (parts per billion) during 2022, about and was 301 ppb in 1980. It is a 300 times stronger greenhouse gas than CO2 by itself, because its absorption is not saturated in the atmosphere. When water vapor is dominant it is diminished by over 70% since it is at the edges of the Atmospheric window. For calculations see Appendix 3.

In 1980 the N2O concentration was 0.3 ppm which results in an increase of the greenhouse effect of 0.0065 C or 0.031 W/m2 ERF from rising levels of N2O since 1980 .

Ozone.

Ozone occurs as stratospheric O3 which is good. It protects us from uv radiation. O3 in the troposphere is considered harmful if it is over 0.08% It is normally around 0,01% in the troposphere. For calculations and figures, see appendix 4.

When the earth’s temperature rises by 0.5C, from 1980 to 2022, the amount of tropospheric O3 probably rises by 2% (Lacking good data I am guessing wildly, in urban areas it may be much more, but this is global average). This comes to 0.0034C temperature increase or 0.016 W/m2 ERF from O3, from 1980 to 2022.

CFC gasses.

CFC’s are cheap and efficient gasses to use in refrigerators and air conditioners.Their use rose rapidly until it was discovered they destroyed the protective ozone layer in the stratosphere, so its use, got banned in 1994, later diminished including its use in inhalers. CFCs has since diminished slowly and is maybe already below the levels in 1980. See also Appendix 5.

HFC gasses.

HFCs replaced CFCs and are rapidly growing in use, and the compressor seals still leak. For pictures on why they are a growing concern for the future, see Appendix 6.

The temperature increase from 1980 to 2022 was 0.0015 C or 0.007 W/m2 ERF.

Summary of all greenhouse effect causes for temperature rise from 1980 until 2022:

Effect from water vapor increase: 0.37 C or 1.75 W/m2; 80.9% of total

Effect from rising CO2: 0.04C or 0.19 W/m2; 8.78% of total

Effect from rising Methane: 0.036 C or 0.17 W/m2, 7.86% of total

Effect from rising N2O: 0.0065 C or 0.031 W/m2 1.4% of total

Effect from rising Ozone: 0.0034C or 0.016 W/m2 0.7% of total

Effect from rising HFCs : 0.0015 C or 0.007 W/m2 0.3% of total

TOTAL TEMPERATURE CHANGE 1980 to 2022: 0.4544C or 2.164 W/m2

Conclusion

CO2 amounts to less than 10% if the temperature increase since 1980, and so does Methane. The green new deal is a pipe dream that does not solve the climate problem, but will make it worse.the price of lithium carbonate used in batteries has risen sixteen-fold between 2020 and late 2022. Since then, it has dropped to one third of its peak price. China has corned the market in Lithium for now. There is not enough Lithium to be economically and ecologically justifiable to mine to meet demand in the future. Since solar and wind power are intermittent supplier of electricity they can never be used as base supplier of energy. Other solutions must be offered

Actions to be taken

What congress is doing to solve the problem.

Congress has passed the anti-inflation bill that included over 300 billion to fight climate change, and it included more solar panels and wind turbine motors to be imported from China. The experience from Europe is that electricity from solar panels and windmills is 5.7 times as expensive as conventional power generation.

This analysis was done for 2019, before COVID. The situation is worse now, with electricity rares up to 80 c/kWh, topping $1 /kWh last winter in some countries before subsides.

Even at the current increased European Gas prices, the estimated excess expenditures on Weather-Dependent “Renewables” in Europe is still very large:  $0.5 trillion in capital expenditures and $1.2 trillion excess expenditures in the long-term.

These simple calculations show that any claim that Wind and Solar power are now cost competitive with conventional fossil fuel (Gas-fired) generation are patently false.  The figures give an outline of the financial achievements of Green activists in stopping  fracking for gas in Europe, close on to $1.2 trillion of excess costs.

It would be better not to import any solar panels and wind power generators from China and let them pay for the extra cost rather than building more coal burning plants. After all they were planning to build over a thousand new plants between now and 2030, all legal under the Paris accord. This would benefit the world climate much more, since Chinese coal plants are far more polluting, since China has far less stringent environmental regulations than U.S.

U.S. uses 13.5% of the world’s coal, and eliminating U.S. CO2 emissions would in time reduce the world temperature by 0.023C, providing no other country, such as China and India would increase their use of Coal, which they are, to the total of 1300 new coal plants between now and 2030. This would raise global temperature by more than 0.06 C.

What congress should do instead.

a. What congress should do immediately.

  1. Immediately stop downblending U 233 and pass The Thorium Energy security act SB 4242a. See more here.

2. Remove Thorium from the list of nuclear source material. The half-life of Thorium232 is 14 billion years, so its radioactivity is barely above background noise. More importantly, while Thorium is fertile, it is not fissile and should therefore not be included in the list. This would make it far easier to mine rare earth metals, as long as the ore consists of less than 0.05% Uranium, but any amount of Thorium is allowed without classifying the ore “Source material”.

3. Separate nuclear power into 3 categories. a. conventional nuclear power. b. Thorium breeder reactors that make more U233 than it consumes, and c. Thorium reactors that reduce nuclear waste.

4. Stop buying solar panels from China. Stop buying wind turbine generators from China. Let them install those in China and pay 5 times as much for their electricity.

5. Immediately form a commission led by competent people, not politicians; to decide how to best expand the electric grid and to best harden it against electro-magnetic pulses, whether solar or nuclear and to safeguard it against sabotage.

6. Remove all subsidies on electric cars, solar panels and wind generators, but continue to encourage energy conservation.

7. Encourage research and development of Thorium fueled reactors, especially liquid salt reactors by drastically simplifying and speeding up the approval process. President Trump issued an executive order in the last month of his presidency EO 13972 specifying that the United States must sustain its ability to meet the energy requirements for its national defense and space exploration initiatives. The ability to use small modular reactors will help maintain and advance United States dominance and strategic leadership across the space and terrestrial domains. This EO should be expanded to include civilian small modular reactors, including Liquid salt Thorium reactors less than 200 MW, which are the only valid reactors for space exploration.

Appendix 1, CO2

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency ranges they absorb.

For this we will have to look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

The red area represents the observed amount of solar radiation that reaches the earth’s surface. the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is not absorbed. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 μm. Of them the 2.7 and 4.3 μm bands absorb where there is little black body radiation, the only band that counts is at 14.9 μm, and that is in a band where the black body radiation is near its maximum. Let us first consider the CO2 alone in a dry atmosphere, that is one with no water vapor at all. We will investigate the concentration of 335 ppm (in 1980) and 415 ppm (in 2022)

The very top line of the top black band represents total absorption at 415 ppm, the bottom of the black black band represents absorption at 335 ppm. Divide the frequency spectrum in 3 parts, below 14 μm, 14-16 μm, and above 16 μm, In the 13 to 14 μm band 66% of available energy is absorbed at 335 ppm, 70% at 415 ppm. in the 14 to 16 μm band 100% of available energy is absorbed at both 335 and 415 ppm. In the > 16 μm the numbers are also 66 and 70%. In addition, temperature is 0.5 C higher at 415 than at 335 ppm, so available energy is 0.7 % higher at 415 ppm.

The net result is greenhouse gas contribution for CO2 is 5.10 C at 335 ppm and 5.26 C at 415 ppm and 1.5C higher ambient temperature for a dry atmosphere.

The normal way to account for greenhouse gasses contribution is to simply add together the CO2 contribution and the contribution from water vapor. This leads to the wrong result for in doing so, the total result is more than 100% for some energy band, because it is impossible to add more than 100% of all available energy for a given wavelength. Again, the spectrum of interest is 13 to 17.4 μm.

The first thing to notice is that no absorption exceeds 100% , so at 14.9 μm wavelength CO2 absorbed 100%, and water vapor absorbed another 75%, the total sum is still 100%. It is impossible to absorb more than 100% of the total energy available for that wavelength. Therefore between the wavelengths 14 and 16 μm all energy was absorbed regardless of CO2 concentration and water vapor concentration. The only fair way to allocate the absorption is proportionally, 57% to CO2 and 43% to water vapor. Likewise, the 13 to 14 μm band is not fully saturated, so the total absorption is 62% of available energy for CO2 and 33% for water vapor. In the 16 to 17.4 μm range the total absorption is 44% for CO2 and 55 % for water vapor. For CO2 at 335 ppm and average temp 13.5 C the total temperature rise, when proportionally allocated comes to 2.73 C for the CO2 and 2.30 C for the water vapor. For CO2 at 415 ppm and an average temp 0.5 C higher, at 14 C average the net temperature increase or ERF in the 13 to 17.4 μm band is 0.035C or +0.17 W/m2 for the water vapor and 0.04C or +0.19 W/m2 for the CO2.

Appendix 2, Methane

Atmospheric methane levels averaged 2.0 ppm (parts per million) during 2022, or around 25% greater than in 1980. It is a 28 times stronger greenhouse gas by itself unlike CO2, because its absorption is not saturated in the atmosphere. On the other hand the lifetime of Methane in the atmosphere is 10 to 15 years, some of the Methane eating bacteria will do its job. There is only one significant absorption band that absorbs in the atmospheric window at 7.7 μm, at the edge of the atmospheric window.

The picture shows a small peak at 7.7μm. This is because at lower wavelengths absorption from water vapor has nearly eliminated the CH4 contribution. Remember that total absorption can never exceed 100 %, so the maximum absorption from CH4 occurs at 7.7μm. At 1.6 ppm it amounts to a greenhouse effect of 0.68 C for a dry gas.

The only major absorption line at 7.7 μm has two side lobes, at 7.5 and 7.9 μm. In the 7.5 μm sideband water vapor already absorbs nearly all energy, so the NH4 is of little effect. In the 7.9 μm sideband water vapor is 50% saturated at that level and the NH4 net absorption is 20% the net greenhouse effect is one fifth of the effect for a dry gas, or 0.14 C. In 1980 the CH4 concentration was 1.6 ppm and will be 2.0 ppm in 2022 which results in an increase of the greenhouse effect of 0.035 C or 0.17 W/m2 ERF from rising levels of Methane since 1980

Appendix 3, N2O.

Atmospheric N2O levels averaged 336 ppb (parts per billion) during 2022, about and was 301 ppb in 1980. It is a 300 times stronger greenhouse gas than CO2 by itself, because its absorption is not saturated in the atmosphere. When water vapor is dominant it is diminished by over 70% since it is at the edges of the Atmospheric window. On the other hand the lifetime of N20 in the atmosphere is short and is typically greatest at 5 p.m. One of the major reasons for the N2O increase is the increase of fertilization with nitrates, the other is from diesel fumes from trains, boats, ships, trucks and mining equipment

The picture shows a double N2O peak at 7.4 and 7.8 μm. . At 0.336 ppm in 2022it amounts to a greenhouse effect of 0.325 C for a dry gas. In the 7.4 μm band water vapor is saturated, in the 7.8 μm band 80% is saturated by water vapor.In 1980 the N2O concentration was 0.3 ppm which results in an increase of the greenhouse effect of 0.0065 C or 0.031 W/m2 ERF from rising levels of N2O since 1980 .

N2O is commonly called laughing gas, and is hazardous in high concentrations, and should be limited in confined places, but in concentrations of under 1 ppm nobody laughs because of that.

Appendix 4, Ozone.

Ozone or 03 is good if it is in the stratosphere. There it helps to absorb the ultraviolet and cosmic rays from the sun and other cosmic radiation. Ozone is bad if it is near the ground. The total proportion of O3 in the troposphere is about 0.01 ppm, yet it is a substantial greenhouse gas because it forms by uv radiation in the stratosphere and mesosphere, and thus protecting us from uv damage. See figure:

The O3 in the troposphere on the other hand is bad. It is normally around 0.01 ppm, but is considered damaging if people are exposed to more than 0.08 ppm in an 8 hour period. This can happen in urban environments in warm and stagnant weather, typically through car traffic. It is a great greenhouse gas because its main absorption band is at 9.5 μm, right in the atmospheric window where the outgoing black body radiation is the greatest. See fig:

The dotted blue line at 9.5 μm represents the tropospheric absorption, the total absorption is between the brown and the solid blue line. The total greenhouse effect from O3 is 0.88C, but the stratosphere does not interact very much with the troposphere, so the stratospheric O3 does not count as a greenhouse gas, only tropospheric O3. The total contribution to the greenhouse effect from tropospheric O3 is about 1/5 of the total, because atmospheric O2 absorbs in the same band limits the temperature rise to 0.17C When the earth’s temperature rises by 0.5C, from 1980 to 2022, the amount of tropospheric O3 probably rises by 2% (Lacking good data I am guessing wildly, in urban areas it may be much more, but this is global average). This comes to 0.0035C temperature increase or 0.016 W/m2 ERF from O3, from 1980 to 2022.

Appendix 5, CFC gasses.

ChloroFluoroCarbon (CFC) gasses started to be manufactured at the beginning of the refrigeration age, replacing ice as the refrigerant. It soon appeared in the atmosphere, mostly due to leaks in the air conditioner compressor seals. It didn’t amount to much as a greenhouse gas even though it was five thousand times more efficient than CO2 as a greenhouse gas. It was discovered that CFCs ate up the Ozone in the stratosphere, and if it continued to increase it could deplete the protective Ozone layer faster than it could be produced. In fact it created an Ozone hole over Antarctica. So it got forbidden Jan 17, 1994, In 2020 even China stopped production. Since 1994 CFC are decreasing by about 1% per year, but cheating persisted, especially among poorer nations and China. By 2022 it will probably have a greenhouse effect of 0.01C or 0,05 W/m2 ERF.

Appendix 6, HFC gases.

CFC started to be phased out and replaced by HydroFluoroCarbons (HFC), less efficient and more expensive, but at least they do not deplete the Ozone layer that protects us from cancer. Some of the HFCs are even bigger greenhouse effect generators than CFC, but well worth it to protect the Ozone layer. Their biggest absorption bands are in the middle of the atmospheric window.

If nothing is done to control them they will increase from nothing in 1980 until 2022 and beyond. See fig: NOAA Research News

The temperature increase from 1980 to 2022 was 0.0014 C or 0.007 W/m2 ERF..

What will the global temperature be in 2050 if we implement all climate initiatives versus doing nothing to save the climate?

As a climate realist, this is a subject that has fascinated me since I was a child in my native Sweden and saw first hand the effect of the ice ages. We learnt in school that the climate was warmer during the age of the Littorina Sea (now the Baltic Sea) around 5,000 years ago, followed by the little ice age when the Baltic Sea froze over and the Swedish army in 1648 crossed the Danish Great Belt on ice and sacked Copenhagen. Since then the climate has gotten milder, some people are worried of a thermal runaway, others about a coming ice age.

I will try to observe and calculate where the temperature of our planet will be in 2050. I will use thermal equilibrium calculations assuming the earth is a black body where incoming radiation is in balance with outgoing radiation. This gives the best instantaneous results. It will also partly give the heating or cooling of lagging bodies such as the oceans.

1. The sun is getting warmer and will explode, but before that there will be a thermal runaway on earth.

Believe it or not, this is how Dr. James Lovelock started trying out to find when the earth’s self regulating ability would come to an end. This eventually lead to the GAIA hypothesis. It turns out that the sun gets brighter at a rate of just over 1% every 100 million years—Earth would suffer this “runaway greenhouse” in 600 million to 700 million years. In the next 27 years that would amount to a temperature increase of 0.000005C

2. The sun has gotten warmer the last 200 years, but we may now be entering the ‘Eddy Grand solar minimum’.

The sun reverses its magnetic field every 11 years or so. and the sunspot intensity varies with time. Every 400 years or so it enters a grand solar minimum and the resulting average global temperature is reduced by about 1C at the minimum. This grand solar minimum may have started in 2020 and will be accelerating, starting in 2025 and reach its minimum around 2070, after which the warming will resume.

3. The effect of the Milankovitch cycles.

We are near the end of the interglacial period, and from now on we will slowly enter a new ice age at a rate of – 1C per 2000 years.This means we are cooling down another 0.0135C by 2050

5. The greenhouse effect increase from now to 2050.

In ‘Of the total temperature rise from 1775 to 2050, how much is due to greenhouse gas increases, and how much is due to CO2 increase?‘ is answered how much temperature increase since the beginning of the industrial age until 2050. Temperature rise from greenhouse gasses from 1775 until now: 0.885 C Here is an estimate of the temperature rise from 2023 to 2050 if the current trends continue.

CO2 rises from 420 ppm to 460 ppm causes a temperature rise of 0.025 C

CH4 rises from 1.9 ppm to 223 ppm causes a temperature rise of 0.02C

Water vapor rises 2% with a 0.3 C abs temperature rise, Greenhouse rise 0.13 C

All other greenhouse gasses combined 0.029 C

Total temperature rise from greenhouse gasses the next 23 years: 0.165C if current trends continue and no action is taken.

But there are sources other than greenhouse gassed for temperature increases

6. The effect from decreasing cloud cover.

White = 100% cloud cover, Dark blue = o% cloud cover

This is a world map showing the average cloud cover in August 2009. It shows the cloud free areas of the earth in blue. Another way to look at it is to see how much total water vapor there is in the atmosphere:

Nowhere on earth can it rain out more than two inches without more humidity being transported in from another place. Over the ocean humidity gets replenished by evaporation, over land only areas that has vegetation or swamps or lakes will replenish humidity by evaporation. Keep these charts in mind for later. For now concentrate on the decreasing average cloud cover. It has only been measured for the last 40 years, but here are the results:

There are many different clouds, low, mid-level and high clouds, and they have changed differently over the same time span:

Of these clouds, the low level clouds are reflecting the most, so the 2.4% loss in average cloud cover is an assumption on the low side on the loss of reflection.

In 1984 the average cloud cover was 63.7%, in 2019, 35 years later it was 61.1%, a loss of 2.6%. over 35 years or 0.075% /year. This amounts to a loss of 1.7% from now until 2050 if the current trend holds. The total reflection from clouds and atmospheric scattering is 77 W/m2, of which 60 is from cloud reflection. A 1.7% loss of area of reflection leads to a decreasing of incoming energy of 60 * 0.017 = 1.03 W/m2. This results in a temperature increase to 287 * fourth root of (1 + (1.03 / 340)) = 287.21 K, or 0.21degree Celsius increase

When temperature increases by 0.21C water vapor increases by 1.25% on average; the total absorption of water vapor increases by 0.3 W/m2, mostly by shrinking the atmospheric window. This amounts to 0.09% 0f the total incoming solar radiation. The current average temp on earth is 287 degree Kelvin, so the temperature rise since pre-industrial times from increasing H2O levels is 287 * fourth root of (1+0.3/340) = 287.063 K, or 0.063 degree Celsius increase.

If this trend continues until 2050 the temperature rise from diminishing clouds will be 0.21 + 0.06 C = 0.27C

7. The effects from air and water pollution. . a. The warming of the Northern Arctic region.

North America has great rivers, none greater than the mighty Mississippi. It used to be a meandering river with frequent floods that resulted in depositing its silt over large areas and thus fertilizing the land. The American Indians living by the river moved to its new location after the water receded, and they could use the newly fertilized land. After the Louisiana purchase river traffic grew rapidly, but shifting sandbars and the excessively winding river became a problem, so the Mississippi river was converted to be the main transportation artery of the middle USA, the river banks were reinforced and the course of the river straightened. This meant that more of the silt was transported out into the Mexican Gulf, some of the silt that used to fertilize the soil instead fertilized the Mexican gulf. In addition, the Mississippi river used to be very polluted, but is now clean enough that it can be used for drinking water after treatment all the way down to Louisiana. There remains elevated concentration of nitrogen compounds so the Mexican Gulf suffers from excessive algae blooms and even red tide from time to time. This leads to more cloud formation and more rain in the United States east of the 98th meridian. This also occurs in Northern Europe, especially in the North Sea; the rivers flowing into the North Sea are rich in nutrients. The Baltic Sea was near oxygen death, but after the Baltic countries and Poland joined the EU, their rivers got partially cleaned up. In the far East the Yellow Sea and the South China sea are suffering major pollution. All these regions produce more clouds, and through prevailing winds some end up in the Arctic, where they snow out, except in the Summer when they rain out except on Greenland where it snows 12 months of the year. This leads to increasing winter temperatures of about 5.5 C above the 80th latitude, 2.5 C in spring and fall and a decrease of about 0.5 C in the summer (it takes a long time to melt that extra snow). This affects about 4% of the earth’s surface, so the total temperature increase from over-fertilizing the rivers is 0.04 * 2.5 = 0.1 C. No such effect occurs in the Antarctic. To illustrate the current yearly temperature trend in the Arctic, see this current polar temperature chart:

Even more illustrative is the development of ice on Greenland. In 2012 it looked like all of Greenland was going to melt in less than 1000 years, and the polar ice cap would be gone altogether in late summer of 2020. The ice over Greenland is now growing ever so slightly again:

b. The effect of various air pollution.

This is a picture from IPCC AR4

The following picture is from IPCC AR5 showing 1750 to 2009

This is from IPCC AR6

These are three interesting charts, trying to explain warming from anthropogenic greenhouse gasses and other pollutants such as aerosols. It is expressed as W/m2 and a 1W/m2 energy absorption results in. a 0.21C temperature rise. But the most important greenhouse gas of all, water vapor is missing from the calculations. IPCC has from the beginning omitted the influence of water vapor. it affects CO2 calculations the most, since CO2 is fully saturated in the most important range, water vapor also participates, and it is impossible to absorb more than all energy available in any given band. Methane and N2O also must be adjusted for water vapor presence. To compensate for the lack of water vapor calculations they assign a temperature runaway factor to the net result, but it depends how much each greenhouse gas is influenced by water vapors, so the net result will not be right.

The greenhouse effect for CO2 between 1750 and 2011 is according to IPCC AR6 is 1. 8 W/m2 or 0.38C. According to my calculations the greenhouse effect from CO2 is 0.35 W/m2 or 0.073 C, and the effect from Water vapor in the same frequency range as CO2 is 0.38 W/m2 or 0.08 C. For CH4 the same calculations yield 0.5 W/m2 or 0.105 C from IPCC6, and 0.26 W/m2 or 0.055 C plus 0.22 W/m2 0r 0.05C from water vapor. This means the real climate sensitivity for CO2 is only 40% of what is given in IPCC AR6. For CH4 the real climate sensitivity is 20% of what is given in IPCC AR6

The major effect from air pollution is that it generates aerosols that act as condensation points for cloud formation if the air is oversaturated with moisture. In the last 40 years the air has gotten cleaner in the industrial west, not so in China, India and Africa. The net result was a 2 % drop in cloud cover and the resulting temperature rise is already accounted for. There are no good worldwide analyses of ancient cloud cover, but air pollution was rising rapidly until the clean air act, enacted in 1963 was beginning to show results in the 70’s. However, ancient method of heating with coal, wood, peat and dried cowdung was far more polluting and harmful to your lungs. If U.S is eliminating all remaining coal plants the CO2 will still be rising since China is planning to build another 1070 coal burning power

c. The effect of greening of most of the earth.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, about 15% more leaves and grass since 1982, done with only the fertilizer of CO2, the earth can now keep another 2 billion people from starvation, not to mention what good it does for plants and wildlife.

The greening of the earth will cause a temperature to increase, thanks to the lowering of the albedo of green leaves and grass rather than desert sand. In addition, with rising CO2 levels the leaves need less water to perform the photosynthesis, so the net result from lowering the albedo by 15% of 0.05 over 17% of the world leads to a warming of the earth. The average albedo on land is 30%, and 17% of the earth lowers the albedo by 15% of 0.05 this lowers the total albedo of the earth by 0.13%.

The total reflection of sunlight from the earth is 22.9 W/m2, so 0.13% of that is 0.030 W/m2, which translates to a net temperature increase of (287 * fourth root of (1+(0.030/ 340)) -287 = 287.063 K, or 0.063 degree Celsius.

d. The areas that are becoming more like a desert.

Most of the earth displays an increase of leaf area, but there are areas in red that are becoming less green. The areas are: The American Southwest, The Pampas area of South America, a 100 mile band in Southern Sahara, part of East Africa, Madagascar, South East Africa, Western Australia, Part of the Volga region, Kazakhstan east of Lake Aral and various parts of China, and the Mekong river. These areas have this in common, the aquifers ate being depleted, the rivers are diminishing and some of them no longer reach the ocean, lakes are almost disappearing, but people still move to those areas “for the good climate”.

The areas so affected are about 900,000 sq miles of the American Southwest and about 3 million square miles total to suffer from becoming more like a desert. The common theme of all these areas is depletion of the aquifers, rivers diminishing, lakes drying up and soil erosion.

The only part of the world US can control directly is The American Southwest. It can expect more frequent and longer droughts, since there is no amplification of clouds from the relatively cool and clean Pacific ocean, and the long term temperature trend is cooling. The Colorado River no longer feeds the Gulf of California with nourishment. The Colorado river used to all the water allocation for all the participating states, but around 2000 the water use had caught up with supply, and since then it has become much worse with demand far outstripping supply.

In addition the Great Salt Lake is now less than a third of the size it was in the 1970’s. A second level water shortage has been issued and for example Arizona will get a million Acre-feet lass per year from the river. The aquifers will be further depleted leading to less rainfall and the few remaining springs will dry out. If nothing is done, the American southwest will become desertified.

Ironically, deserts have a higher albedo than green soil, so letting the American Southwest become a desert would have a cooling effect by the increasing albedo, but the effect from the disappearing clouds would have a far greater heating effect, so letting the American Southwest become a desert is not a solution to the problem.

However, the area subject to desertification is about 0.6% of the world’s land area and rising the albedo by 0.05 leads to a cooling down. The average albedo of the earth is 30%, and before desertification the albedo was 25%, this rises the albedo of the earth by 0.03%. The total reflection of sunlight from the earth is 22.9 W/m2, so 0.03% of that is 0.007 W/m2, which translates to a net temperature decreasee of 287 * fourth root of (1- (0.007/ 340)) = 286.9985 K, or a cool down of 0.0015 degree Celsius.

Summary of all causes for climate change from now until 2050:

Long term warming of the sun: 0.000005C

Effect from the potential Eddy Grand Solar minimum: 0 to – 1C. Yes,that’s cooler

Effect from the Milankovitch cycles: – 0.0135C

Effect from reversing the magnetic poles: undetermined.

Direct effect from rising CO2: 0.025C

Effect from increasing CO2 increasing water vapor : 0.03 C

All other greenhouse gasses combined 0.032 C

Temperature rise from decreasing cloud cover 0.27C

Temperature increase from greening of the earth 0.063C

Temperature decrease from areas of desertification 0.0015C

TOTAL TEMPERATURE CHANGE 2023 to 2050: 0.384 C rise to 0,616 C decrease if the Dodd grand solar minimum occurs

If the cloudiness of the earth stays the same the temperature change will be from a 0.114 C rise to a 0,886 C decrease between now and 2050.

Of the changes CO2 amounts to only 6.5% of the potential change, decreasing cloud cover could be up to 70% of the rise.

What will be the temperature in 2050 if all pledges by the Paris accord were fulfilled?

The sum of all pledges means a 15% reduction in the RISE of C02 between now and 2050, leading to a reduction in temperature rise from rising CO2 of 0.004 C. In addition it will reduce the amount of temperature rise from the greening of the world by 0.0009 C. the total temperature rise will be 0.0049 C less by 2050.

Then again, temperatures will rise again after 2050 when the Grand solar minimum is over, but by that time we should have switched electricity production to Uranium and Thorium Nuclear power. We need the coal for the coming ice age. And fusion power is always around the corner and will one day solve our energy problems.

What congress is doing to “solve the problem.”

Congress has passed the anti-inflation bill that included over 300 billion to fight climate change, and it included more solar panels and wind turbine motors to be imported from China. The experience from Europe is that electricity from solar panels and windmills is 5.7 times as expensive as conventional power generation.

This analysis was done for 2019, before COVID. The situation is even worse now, with electricity rares up to 80 c/kWh, topping $1 /kWh this winter in some countries.

Even at the current increased European Gas prices, the estimated excess expenditures on Weather-Dependent “Renewables” in Europe is still very large:  $~0.5 trillion in capital expenditures and $~1.2 trillion excess expenditures in the long-term.

These simple calculations show that any claim that Wind and Solar power are now cost competitive with conventional fossil fuel (Gas-fired) generation are patently false.  The figures give an outline of the financial achievements of Green activists in stopping  fracking for gas in Europe, close on to $1.2 trillion of excess costs.

It would be better not to import any solar panels and wind power generators from China and let them pay for the extra cost rather than building more coal burning plants. After all they were planning to build over a thousand new plants between now and 2030, all legal under the Paris accord. This would benefit the world climate much more, since Chinese coal plants are far more polluting, since China has far less stringent environmental regulations than U.S.

U.S. uses 13.5% of the world’s coal, and eliminating U.S. CO2 emissions would in time reduce the world temperature by 0.023C, providing no other country, such as China and India would increase their use of Coal, which they are, to the total of 1300 new coal plants between now and 2030. This would raise global temperature by more than 0.06 C.

What congress should do instead.

a. What congress should do immediately.

  1. Immediately stop downblending U 233 and pass The Thorium Energy security act SB 4242a. See more here.

2. Remove Thorium from the list of nuclear source material. The half-life of Thorium232 is 14 billion years, so its radioactivity is barely above background level. More importantly, while Thorium is fertile, it is not fissile and should therefore not be included in the list. This would make it far easier to mine rare earth metals, as long as the ore consists of less than 0.05% Uranium, but any amount of Thorium is allowed without classifying the ore “Source material”.

3. Separate nuclear power into 3 categories. a. Conventional nuclear power. b. Thorium breeder reactors that make more U233 than it consumes, and c. Thorium reactors that reduce nuclear waste.

4. Stop buying solar panels from China. Stop buying wind turbine generators from China. Let them install those in China and pay 5 times as much for their electricity.

5. Immediately form a commission led by competent people, not politicians; to decide how to best expand the electric grid and to best harden it against electro-magnetic pulses, whether solar or nuclear and to safeguard it against sabotage.

6. Remove all subsidies on electric cars, solar panels and wind generators, but continue to encourage energy conservation.

7. Encourage research and development of Thorium fueled reactors, especially liquid salt reactors by drastically simplifying and speeding up the approval process. President Trump issued an executive order in the last month of his presidency EO 13972 specifying that the United States must sustain its ability to meet the energy requirements for its national defense and space exploration initiatives. The ability to use small modular reactors will help maintain and advance United States dominance and strategic leadership across the space and terrestrial domains. This EO should be expanded to include civilian small modular reactors, including Liquid salt Thorium reactors less than 200 MW, which are the only valid reactors for space exploration.

b. Longer term developments, but extremely urgent.

Of the long term warming of the globe of 1.1 C since the beginning of industrialization only 0.11 C is attributable to rising CO2, NH4 and NO2 levels, of which United states is currently responsible for 13.5% and decreasing, or 0.023C. The disappearance of clouds is responsible for twice as much globally or 0.27 C, of which probably 1/6 is occurring in the American Southwest, causing an increase in temperature of 0.045C. However, the temperature rise in say the Grand Canyon has been in excess of 2 C,, and in the urban areas it has been even more. Below are my long term suggestions:

Build a TransContinental Aqueduct.

A realistic way to save Lake Mead and reverse the desertification of the American SouthWest.Build a TransContinental Aqueduct. A realistic way to save Lake Mead and reverse the desertification of the American SouthWest.

The problem:

Lake Mead will be emptied in less than 10 years with the current usage pattern. Then what?

The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.

The aquifers in Arizona, especially in the Phoenix and Tucson area, and to some extent New Mexico and the dry part of Texas are being drawn down and are at risk of being exhausted.

The Salton Sea in the Imperial Valley of California is maybe the most polluted lake in all of U.S.A. It is even dangerous to breathe the air around it sometimes. The area contains maybe the largest Lithium deposit in the world.

The Colorado River water is too salty for good irrigation .

The Colorado river no longer reaches the Gulf of California. Fishing and shrimp harvesting around the Colorado River Delta is no more.

The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.

40 million people depend on the Colorado River for drinking water. The population is still rising rapidly in the West. Will they have water in the future?

Except for California there is not much pumped Hydro-power storage in the American Southwest.

Texas has plenty of wind power, but no pumped hydro-power storage. This makes it difficult to provide peak power when the sun doesn’t shine and the wind doesn’t blow. Nuclear power is of no help, it provides base power only. Peak power has to come from coal and natural gas plants.

New Mexico has some ideal spots for solar panels, but no water is available for pumped storage.

Arizona has a surging population, wind and solar power locations are abundant, but no pumped hydro-power storage.

Arkansas and Oklahoma have a good barge traffic system. This proposal will increase flood control and improve barge traffic by increasing the maximum barge draft from 9 feet to 12 feet, and during dry periods reverse the flow of the Arkansas River. The Arkansas river yearly water flow is nearly double that of the Colorado River.

The solution:

Build a transcontinental aqueduct from the Mississippi River to the Colorado River capable of transporting 12 million acre-ft of water yearly through Arkansas, Oklahoma, Texas, New Mexico and Arizona. It will be built similar to the Central Arizona Project aqueduct that is supplying water from the Colorado river to the Phoenix and Tucson area, but this aqueduct will be carrying four times more water over four times the distance and raise the water nearly twice as high before returning to near sea level. The original Central Arizona Project cost $4.7 billion in 1980’s money, the Transcontinental Aqueduct will in Phase 1 cost around $200 Billion in 2023 money applying simple scaling up principles.

The Mississippi River has a bad reputation for having polluted water, but since the clean water act the water quality has improved drastically. Fecal coli-form bacteria is down by a factor of more than 100, the water is now used all the way down to New Orleans for drinking water after treatment. The lead levels are down by a factor of 1000 or more since 1979. Plastic pollution and pharmaceutical pollution are still a problem, as is the case with most rivers. The Ph is back to around 8 and salt content is negligible. Mississippi water is good for irrigation, and usable for drinking water after treatment. The Arkansas River is used as a drinking water source.

But the aqueduct will do more than provide sweet Mississippi water to the thirsty South-west, it will make possible to provide peak power to Texas, New Mexico and Arizona. In fact, it is so big it will nearly triple the pumped Hydro-power storage for the nation, from 23 GW for 5 hours a day to up to 66 GW when fully built out.

The extra pumped hydro-power storage will come from a number of dams built as part of the aqueduct or adjacent to it. The water will be pumped from surplus wind and solar power generators when available. This will provide up to 50 GW of power for 5 hours a day. If not enough extra power has been generated during the 19 pumping hours, sometimes power will be purchased from the regular grid. The other source of pumped hydro-power storage is virtual. There will be up to 23 GW of LFTR (Liquid Fluoride salt Thorium Rector) power stations strategically stationed along the waterway providing pumping of water for 19 hours and providing virtual hydro-power output for the remaining 5, when the aqueduct is fully built.

These 43 GW of hydro-power capacity will be as follows: Oklahoma, 0.2 GW; Texas, 18,5 GW (right now, Texas has no hydro-power storage, but plenty of wind power); New Mexico, 10.5 GW; Arizona 13.6 GW. In Addition, when the Transcontinental Aqueduct is fully built out, the Hoover dam can provide a true 2.2 GW hydro-power storage by pumping water back from Lake Mojave; a 3 billion dollar existing proposal is waiting to be realized once Lake Mead is saved.

The amount of installed hydroelectric power storage is:

U.S. operating hydroelectric pumped storage capacity

Most hydroelectric pumped storage was installed in the 70’s. Now natural gas plants provide most of the peak power. This aqueduct will more than double, triple the U.S. pumped peak storage if virtual peak storage is included. By being pumped from surplus wind and solar energy as well as surplus nuclear energy it is true “Green power”. People like that.

What follows is a description of each leg of the aqueduct. Each leg except legs 7,8,9, 11 and 12 end in a dam or lake, which hold enough water to make each leg free to operate to best use of available electricity and provide peak power on demand.

Leg 1 of the Trans-Continental aqueduct. From the Mississippi river to the Robert S. Kerr Lock and dam on the Arkansas River. Total length 15miles of aqueduct and 305 miles of river. Cost of water 300 kWh per acre-ft.

Leg 2 of the Transcontinental Aqueduct: From the Robert S. Kerr Lock and dam to the Eufaula Dam on the Canadian River. Total length 42 miles of lake and river. Cost of water 585 kWh per acre-ft.

Leg 3 of the Transcontinental aqueduct. From the Eufaula Dam to Ray Roberts Lake. Total length 42 miles of lake and 125 miles of aqueduct. Cost of water 900 kWh per acre-ft.

Leg 4 of the Transcontinental Aqueduct. From Lake Ray Roberts to the Brad Dam (to be built). Total length 205 miles of aqueduct. Cost of water 1735 kWh per acre-ft.

Leg 5 of the Transcontinental aqueduct. From Brad dam to Deadman Draw dam and pumped storage power plant. Total length 5 miles of lake and 60 miles of aqueduct. Cost of water 2425 kWh per acre-ft. In Phase 2 can provide up to 4 GW of pumped storage power.

Leg 6 of the Transcontinental aqueduct. From Deadman Draw dam and pumped storage power plant to Buffalo Soldier Draw dam and optional pumped storage plant.Total length 205 miles of aqueduct. Cost of water 3711 kWh per acre-ft.In Phase 2 can provide up to 4.8 GW of pumped storage power.

Leg 7, leg 8 and leg 9 of the Transcontinental aqueduct. From the Buffalo Soldier Draw dam to the highest point of the aqueduct 10 miles into Arizona. Leg 7 is 255 miles. Cost of water 6132 kWh per acre-ft. Leg 8 is 125 miles. Cost of water is 5705 kWh per acre-ft. Leg 9 is 160 miles. Cost of water is 6605 kWh per acre-ft.

The Transcontinental Aqueduct. Leg 10: The highest pumping station in Arizona to San Carlos Lake, a distance of 93 miles. Cost of water 5205 kWh per acre-ft.

The Transcontinental Aqueduct. Leg 11: From San Carlos Lake to East Diversion dam, a distance of about 60 miles. Cost of water 4905 kWh per acre-ft.

The Transcontinental aqueduct Leg 12: From the East Diversion dam to connecting to the Central Arizona aqueduct 45 miles WNW of Phoenix. Phase 1 is 20 miles of aqueduct and 85 miles of River. Cost of water is 5105 kWh per acre-ft. Phase 2 adds 130 miles of aqueduct . The cost of water is 5065 kWh per acre-ft.

The Transcontinental aqueduct, Leg 13: From the New Arlington dam to the Colorado River. Leg 13, phase 1 is 130 miles of river.Cost of water is 5105 kWh per acre-ft. Phase 2 adds 15 miles of aqueduct . The cost of water is 5130 kWh per acre-ft.

The Transcontinental Aqueduct, spur 14: The Wilson Canyon Solar farm and pumped storage plant. Can supply 13.5 GW of pumped storage power.

The Transcontinental Aqueduct, spur 15: The Poppy Canyon Solar farm and pumped storage plant. Can provide up to 28 GW of pumped storage power.

The Transcontinental Aqueduct will serve the Lower Colorado River Basin, Southern New Mexico and Western Texas. It will pump up to 12 million acre-ft of water annually from the Arkansas river and Mississippi river all the way to southern Colorado River.

The total electricity needed to accomplish this giant endeavor is about 60 billion kWh annually. or about one and a half percent of the current US electricity demand. In 2020 the US produced 1,586 billion kWh from natural gas, 956 from coal, 337.5 from wind and 90.9 from solar.

For this giant project to have any chance of success there has to be something in it to be gained from every state that will be participating. Here are some of the benefits:

Arizona: Arizona needs more water. The water from Mississippi is less saline and better suited for agriculture and the people growth makes it necessary to provide more water sources. Right now the aquifers are being depleted. Then what? One example: The San Carlos lake is nearly dry half the time and almost never filled to capacity. With the aqueduct supplying water it can be filled to 80 +- 20% of full capacity all the time. In the event of a very large snow melt the lake level can be reduced in advance to accommodate the extra flow. Likewise during Monsoon season the aqueduct flow can be reduced in anticipation of large rain events. Arizona together with New Mexico has the best locations for solar power, but is lacking the water necessary for hydro-power storage. This proposal will give 600 cfs of water to Tucson, 3,100 cfs to the Phoenix area and 3,900 cfs to the lower Colorado River in Phase 1. I phase 2 it will add 3,100 cfs to Lake Havasu and an extra 4,700 cfs to the lower Colorado River. It will also also add 28 GW of hydro-power storage capable of adding 140 GWh of electric peak power daily when it is fully built out in Phase 3.

Arkansas: The main benefit for Arkansas is better flood control and river control of the Arkansas River and allowing it to deepen the draft for canal barges from 9,5 feet to 12 feet, which is standard on the Mississippi river.

California: The water aqueduct serving Los Angeles will be allowed to use maximum capacity at all times. Additional water resources will be given the greater San Diego area. The Imperial valley will be given sweet Mississippi and Arkansas River water, which will improve agriculture yield. The polluted New River will be cut off at the Mexico border. There will be water allocated to the Salton Sea. There is a proposal to mine the world’s largest Lithium ore, mining the deep brine, rich in Lithium. (about a third of the world supply according to one estimate). This requires water, and as a minimum requirement to allow mining in the Salton Sea the water needs to be cleaned. This requires further investigation, but the area around the Salton Sea is maybe the most unhealthy in the United States. It used to be a great vacation spot.

Mexico: During the negotiations about who was going to get the water in Lake Mead Mexico did not get enough water, so they have been using all remaining water for irrigation, and no water is reaching the ocean anymore. In addition the water is too salty for ideal irrigation. This proposal will provide sweet Mississippi and Arkansas River water to Mexico, ensure that some water reaches the Colorado river delta. This will restore the important ecology and restore aquatic life in the delta and the gulf. The town of Mexicali will get some water in exchange for shutting off New River completely.

Nevada: Las Vegas is a catastrophe waiting to happen unless Lake Mead is saved. With this proposal there will be ample opportunity to make the desert bloom.

New Mexico: The state is ideally suited for solar panels. In addition to give much needed water to communities along the length of the aqueduct, it will provide 13.5 GW of pumped storage power to be made available at peak power usage for up to 5 hours a day.

Oklahoma: The main advantage for Oklahoma is a much improved flood control. It will provide the same advantage for river barge traffic as benefits Arkansas.

Texas: The state has a big problem. It has already built up too much wind power and can not give up their coal burning power plants until the electricity is better balanced. They have no hydro-electric power storage at all, and we saw the result of that in a previous year’s cold snap. This proposal will give the Texas electric grid 8.8 GW of hydro-electric power for up to 5 hours a day.

Utah: The state will no longer be bound to provide water to Lake Mead, but can use all of its water rights for Utah, especially the Salt Lake City region, and to reverse the decline of the Great Salt Lake that is now shrunk to less than a third of the size it had in the 1970’s.

Wyoming: The state will be free to use the water in the Green River and all the yearly allocated 1.05 million acre-feet of water can be used by the state of Wyoming.

The cost to do all these aqueducts will be substantial, but it can be done for less than 350 billion dollars in 2022 money, and that includes the cost of providing power generation. Considering it involves 40 million people dependent on the Colorado River now and another 10 million east of the Rocky Mountains, it is well worth doing, much more important to do than other “green” projects, since it will save the American Southwest from becoming an uninhabitable desert.

This proposed solution cannot be made possible without changing our approach to power generation. The mantra now is to solve all our power needs through renewables. Texas has shown us that too much wind power without any hydroelectric power storage can lead to disaster. In addition, windmills kill birds, even threatening some species, such as the Golden Eagle and other large raptors that like to build their aeries on top of the generators. Solar panels work best in arid, sunny climate, such as Arizona and New Mexico, but the panels need cooling and cleaning to work best, and that takes water. They are even more dependent on hydro-power storage than wind. The transcontinental aqueduct will triple the hydro-electric power storage for the nation. Without pumped power storage we still need all the conventional power generation capacity for when the sun doesn’t shine and the wind doesn’t blow.

Conventional Nuclear power plants doesn’t work in most places since they depend on water for their cooling, and most of these aqueducts pump water in near deserts, and there would be too much evaporation losses to use water from the aqueducts for cooling.

The only realistic approach would be to use LFTR power plants. (Liquid Fluoride Thorium Reactors). There are many advantages for using LFTR. Here are 30 reasons why LFTRs is by far the best choice.

For this project to succeed there must be developed a better way to build SMRs (Small Modular Reactors, less than 250 MW) more effectively. The price to build a LFTR plant should be less than $2.50 per watt. While the LFTR science is well understood, the LFTR engineering is not fully developed yet, but will be ready in less than 5 years if we get to it. In the mean time there should be built one or more assembly plants that can mass produce LFTR reactor vessels small enough so they can be shipped on a normal flatbed trailer through the normal highway system. My contention is that a 100 MW reactor vessel can be built this way and the total cost per plant will be less than 250 Million dollars. To save the American Southwest we will need about 350 of them, or 87,5 billion dollars total. This cost is included in the total calculation. There will be many more of these plants produced to produce all the electric power to power all the electric vehicles that are going to be built. This is the way to reduce fossil fuel consumption. Just switching to electric vehicles will not do the trick. The electric energy must come from somewhere. To convert all cars and trucks and with unchanging driving habits will require another 600 GW of generating capacity by 2050, our present “net zero emissions” goal.

To do this project we need cooperation from all states in providing eminent domain access. The Federal government will need to approve LFTR as the preferred Nuclear process and streamline approval process from many years to less than one year.

Some of the power will come from solar panels and wind turbines, which will reduce the need for LFTR’s. One tantalizing idea is to cover the aqueduct with solar panels. This will do many things, it will not take up additional acreage, water needed to keep the panels clean is readily available, and can even be used to cool the solar panels if economically beneficial. The area available is 152 feet times 1100 miles = 1.6 billion square feet, and one square foot of solar panel produces around 1 W, which means covering the aqueduct with solar panels would produce 882 MW of power. It would also reduce evaporation. The second source of energy will be 165,000 5kW vertical wind turbines producing 825 MW when the wind is blowing. The rest of the power will cme from LFTRs. This idea requires further analysis. Here is one possible implementation of the idea:

This image has an empty alt attribute; its file name is aqueductcrossection.jpg

Further developments to save the American Southwest.

When the Transcontinental aqueduct is well under way it is time to start the Trans-Rocky-Mountain Aqueduct. in a few years the population growth will require again to save Lake Powell and Lake Mead, and rejuvenate the American South-west.

The problem:

  1. Lake Powell and Lake Mead will be emptied in less than 10 years with the current usage pattern. Then what?
  2. The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.
  3. the aquifers are drawn down everywhere in the Southwest, but also the Ogallala Aquifer in Colorado and Kansas, and are at risk of being exhausted.
  4. The Colorado River water is too salty for good irrigation .
  5. The Colorado river no longer reaches the Gulf of California. Fishing and shrimp harvesting around the Colorado River Delta is no more.
  6. 40 million people depend on the Colorado River for drinking water. The population is still rising rapidly in the West. Will they have water in the future? Think 20 million future population growth in the next 40 years, people want to move there even with the current water problems.

The solution:

Build a Trans-Rocky-Mountain aqueduct from the Mississippi River to the San Juan River. In the first 391 miles the aqueduct joins the McClellan–Kerr Arkansas River Navigation System by adding the capability of pumping 7,500 cfs of water through 16 dams that service the locks. This will lead to reversing the flow of water during low flow. This also facilitates the navigation channel to be deepened from 9 feet to 12 feet to service fully loaded barges, a step authorized but not funded by Congress. The Arkansas river will then be capable of transporting 8 million acre-ft of water yearly through Arkansas, Oklahoma, Kansas, Colorado and New Mexico, supplying water from the Colorado river to Lake Powell. All that is needed to do in this stage is provide the dams and locks with a number of pumps and pump/generators to accommodate this, at a cost of less than 2 billion dollars. The next phase is pumping up water in the Arkansas river for 185 miles. To accommodate this there will be 17 small control dams built that are closed when normal pumping occurs and open during flood conditions. The cost for this segment, including pumps will be less than 3 billion dollars. The third segment is a 465 mile aqueduct to cross the Rocky Mountains much like the Central Arizona project but this aqueduct will carry three times more water 1.27 times the distance and raise the water four times higher. The original Central Arizona Project cost $4.7 billion in 1980’s money, the aqueduct part of the Trans-Rocky-Mountain aqueduct will cost around $50 Billion in 2021 money applying simple scaling up principles.

Power requirements for the 3 stages are 310 MW for the canal stage, 600MW for the river stage and 6.2 GW for the aqueduct stage. The aqueduct stage can be controlled by the power companies to shut off the pumps and provide 6.4 GW of virtual peak power for up to 5 hours a day on average, and each leg can be controlled individually since they are separated by large dams. There will be 64 one hundred MegaWatt LFTR (Liquid Fluoride salt Thorium Rector) power stations strategically stationed along the waterway providing pumping of water for 19 hours and providing virtual hydro-power output for on average 5 hours. There will also be 910 MW of power needed that is controlled by the river authorities.

The building cost of providing LFTR power should be around $2.50 per Watt of installed energy if a plant is built to manufacture via an assembly line a standardized version of 100 MW LFTR reactor core vessels assemblies capable of being transported on truck to the installation point. The total power cost should then be 16 billion dollars to build, and 5 cents per kWh or about 2.5 billion dollars a year to provide power.

The Mississippi River has a bad reputation for having polluted water, but since the clean water act the water quality has improved drastically. Fecal coli-form bacteria is down by a factor of more than 100, the water is now used all the way down to New Orleans for drinking water after treatment. The lead levels are down by a factor of 1000 or more since 1979. Plastic pollution and pharmaceutical pollution is still a problem, as is the case with most rivers. The Ph is back to around 8 and salt content is negligible. Mississippi water is good for irrigation, and usable for drinking water after treatment. The Arkansas River water quality is pretty good, good enough in Kaw Lake to be used for municipal water supply. Nitrates and phosphates are lower than in most Eastern rivers, Ph is around 8 and coli-bacteria low.

Most hydroelectric pumped storage was installed in the 70’s. Now natural gas plants provide most of the peak power. This aqueduct will add 6.4 GW to the U.S. pumped peak storage if virtual peak storage is included. By being pumped from surplus wind and solar energy as well as nuclear energy it is true “Green power”. Some people like that.

What follows is a description of each leg of the aqueduct. Legs 3, 4, 5 and 6 ends in a dam, which holds enough water to make each leg free to operate to best use of available electricity and provide peak power on demand.

Leg 1 of The Trans-Rocky-Mountain aqueduct. From the Mississippi river to Webbers Falls lock and dam. Total length 15miles of aqueduct and 335 miles of river. Cost of water 333 kWh per acre-ft.

Leg 2 of The Trans-Rocky-Mountain aqueduct. From Webbers Falls to Keystone Dam, a distance of about 75 miles that is river and 25 miles, which is canal. Cost of water 593 kWh per acre-ft.

Leg 3 of the Trans-Rocky-Mountain aqueduct. From Keystone Dam to Kaw Dam.The Keystone Lake is 38 miles long and the river part is about 110 miles. Cost of water 901 kWh per acre-ft.

Leg 4 of the Trans-Rocky-Mountain aqueduct. From Kaw Lake to John Martin Reservoir, a distance of about 200 miles. Cost of water 4,446 kWh per acre-ft.

Leg 5 of the Trans-Rocky-Mountain aqueduct. From John Martin Reservoir to Trinidad Lake, a distance of about 120 miles. Cost of water 7,300 kWh per acre-ft.

Leg 6 of the Trans-Rocky-Mountain aqueduct. From Trinidad Lake to Abiquiu Reservoir, a distance of 90 miles. Cost of water 7,910 kWh per acre-ft.

Leg 7 of the Trans-Rocky-Mountain aqueduct. From the Abiquiu Reservoir to the San Juan River, a distance of 55 miles. Cost of water 7,395 kWh per acre-ft.

Once these two aquifers are completed and running successfully filling the rivers again it is time to refill the aquifers. This requires a change in the water rights laws. The rain water is a property of the land and can be locally retained via small catch basins and ditches. This will restore the aquifers, reduce soil erosion and rejuvenate vegetation as has been successfully done in the dry parts of India. They needed to capture the monsoon rains, and so does Arizona and New Mexico.

One more thing:

Build a South Platte River aqueduct. This will solve the water needs for the greater Denver ares and help preserve the northern Ogallala aquifer.

The rise in CO2 is on balance positive, it has already helped to keep 2 billion people from starvation. With food famine coming the very worst thing we can do is declare a climate emergency and unilaterally reduce our electric supply eliminating much of our fossil fuel source to produce electricity and at the same time push electric cars.

This cannot be solved unless there will be a deep commitment to Nuclear power, streamline government permit processes and let private industry find the best solutions without government playing favorites and slowing down the process. Regular U235 power is not sufficient for this, Only Thorium power will do, and there are many reasons for it. Here are 30 of them:

 1. A million year supply of Thorium available worldwide.

 2. Thorium already mined, ready to be extracted.

 3. Thorium based nuclear power produces 0.012 percent as much TRansUranium waste products as traditional nuclear power.

 4. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.

 5. Thorium nuclear power is only realistic solution to power space colonies.

 6. Radioactive waste from an Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick.

 7. Thorium based nuclear power is not suited for making nuclear bombs.

 8. Produces isotopes that helps treat and maybe cure certain cancers.

 9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.

10. Molten Salt Liquid Fluoride Thorium Reactors cannot have a meltdown, the fuel is already molten, and it is a continuous process. No need for refueling shutdowns.

11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

12. Atmospheric pressure operating conditions, no risk for explosions. Much safer and simpler design.

13. Virtually no spent fuel problem, very little on site storage or transport.

14. Liquid Fluoride Thorium Nuclear reactors scale beautifully from small portable generators to full size power plants.

15. No need for evacuation zones, Liquid Fuel Thorium Reactors can be placed near urban areas.

16. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

17. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

18. Russia has an active Thorium program.

19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

 20. China is having a massive Thorium program.

21. United States used to be the leader in Thorium usage. What happened?

22. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

23. With a Molten Salt Reactor, accidents like Chernobyl are impossible.

24. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

25. Will produce electrical energy at about 4 cents per kWh.

26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles.

27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed.

28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

29. President Donald J. Trump on Jan. 5 2021 issued an Executive Order on Promoting Small Modular Reactors for National Defense and Space Exploration. Only Liquid fluoride thorium reactors can meet all the needs.

30. We have to switch from Uranium to Thorium as nuclear feed-stock. We are running out of domestic Uranium.

My favorite Thorium power plant would be a 100 MW Liquid Fluoride Thorium Reactor (LFTR). It is also called a Small Modular Reactor (SMR). It is small enough that all core elements will fit in three standard truck containers and be made on an assembly line. It can be constructed many ways, one is a normal fast breeder reactor, another is adapted to burn nuclear waste. The cost for these reactors, when built on an assembly line will be less than $2 per Watt. They can be placed anywhere, since they are inherently safe, no need for an evacuation zone. Since they are operating at 500C temperature with either gas or liquid lead as heat transfer media there is no need for water as a cooling medium. When mass produced it will be able to produce electricity at 5 c per kWh and the mining to produce the materials is a fraction of what is needed for solar, and wind power, especially when taking into account the intermittent nature of these power sources.The only thing better would be fusion power, but that is at least 20 years away as a power producing source, but it is coming. These are exciting times!

The IPCC Sixth assessment report still has not solved the miscalculations in temperature rise.

The 6th IPCC assessment report still suffers from the same fatal flaw that was in the first assessment report regarding greenhouse gases. It assumes greenhouse gases are additive when in fact it is impossible to absorb more energy than is available in any given energy band! This misunderstanding on how nature works leads to a gross misunderstanding of the importance of CO2 and Methane.

Here are their opinion on

One: Retire coal plants. As part of the Paris accord we are allowing China, India, South-east Asia, Africa and other developing countries to build coal plants until 2030, and we will have to pay for some of the expenses to make them cleaner. China alone is allowed to build over 1000 new coal plants. Right now China already exceeds the U.S. in coal fired electric generation per capita, and only U.S, the European Union, Oceania and Latin America are retiring coal plants. See Chart: See details here

Top line:China. next:The U.S. followed by India and South and East Asia,

Two: invest in clean energy. Wind and solar alone will not solve the problem since they are intermittent. They also require a large amount of mining of rare earth and other metals, the total life cycle cost must be included in any calculation. Only a Manhattan type project to facilitate the development of Thorium based nuclear power, and revamp the electric grid will suffice. See the advantages of Thorium nuclear power here

Three: Retrofit and decarbonize buildidngs. They probably mean to insulate old buildings and make more efficient heating and cooling systems, but decarbonize?

Four: Decarbonize cement, steel and plastics. Cement is made by decarbonizing limestone from CaCO3 to CaO, generating yearly about 7% of the world’s CO2. China alone produces over half of the world’s cement. Decarbonizing steel makes it iron, and there are very few uses for pure iron. I don’t understand how to decarbonize plastics.

Five: Shift to electric vehicles. This shift should occur as soon as nearly all coal fired plants have been decommissioned. Again small, sealed Thorium powered units should be used for trains and ships, and maybe even for cargo planes.

Six: Increase public transport, biking and walking. The most important thing about public transport, biking and walking is to make it safer. Lack of safety hinders its growth.

Seven: Decarbonize aviation and shipping. Ships, from Mississippi river size tugboats to large ships should be converted to nuclear. Aviation should be made nuclear in two steps. First make large cargo planes nuclear, then when safety records are established convert passenger traffic to nuclear. This may take some time since lightweight Thorium nuclear reactors are not developed yet.

Eight: Halt deforestation and restore degraded lands. Now we are talking. This is of utmost importance. Should have been number one.

Nine: Reduce food loss and waste and improve agricultural practices. This is why it is of utmost importance to reliably electrify the third world with reliable energy. Rotating and long blackouts are damaging to farming, ranching, the food supply and the economy.

Ten: Eat more plants and less meat. Don’t micromanage our eating habits. Let the farmers produce what the land will support and the people desire. This is the best way.

Climate change is real,but increasing CO2 is responsible for less than 14% of it.

1. The sun has gotten warmer the last 200 years, but we are now entering the ‘Eddy Grand solar minimum’.

The sun reverses its magnetic field every 11 years or so. and the sunspot intensity varies with time. Every 400 years or so it enters a grand solar minimum and the resulting average global temperature is reduced by about 1C at the minimum. This grand solar minimum started in 2020 and is accelerating. After 2070 the sun will again be more active.

2. The effect of the Milankovitch cycles.

We are near the end of the interglacial period, and from now on we will slowly enter a new ice age at a rate of 1C per 2000 years.

3. The earth’s magnetic field has begun to reverse poles.

The reversal of the earth’s magnetic field has begun and the field is now decreasing at about 1% per year. It is not noticeable yer except in the South Atlantic where the field is already 30% weaker. This is not so much a temperature event, but because more cosmic radiation will enter the earth it will rain more in areas that already has too much rain and worsen the drought ridden areas. In addition there will be increased damage from radiation effects.

4. The greenhouse effect increase.

The greenhouse effect is what makes life on earth,as we know it, possible.Without greenhouse effect the earth would be cooler by about 33 degrees Celsius.

The Earth has warmed 1.3 to 1.4 degree Celsius since the little ice age, coinciding with the beginning of the industrial age and the rate of increase has been increasing. To better understand how much of this warming is due to greenhouse gases look at this chart:

From this chart we can see that water vapor is by far the most important greenhouse gas, followed by CO2 with Methane and Nitrous oxide far behind. Oxygen is part of the atmosphere, and so is Nitrogen and their concentrations are assumed to be constant. Ozone concentration is too small to have any effect. Raleigh scattering is why the sky is blue and it is constant regardless of other factors.

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency range s they absorb.

For this we will have to look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

The red area represents the observed amount of solar radiation that reaches the earth’s surface. the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is re-emitted. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 microns. Of them the 2.7 and 4.3 micron bands absorb where there is little black body radiation, the only band that counts is at 15 microns, and that is in a band where the black body radiation has its maximum. However it is also in a band where water vapor also absorb, not as much as CO2,only about 20% to 70% as much. The important thing is that in the frequency band of 14.5 to 15.5 micron CO2 absorbs all the energy available in that spectral range, and it also did it before industrialization when CO2 levels were one third less than today!

. But the top chart is deceiving, for it does not fully explain the net effect on radiation, from the sun or from the earth. The chart below displays it better:

The incoming solar radiation includes ultraviolet radiation, visible light and near infrared radiation. This is all the heat incoming to the earth, except what is conducted from the earth’s core. All area under the curves of the right half represent greenhouse gases absorption, except the blue area which represents energy radiated into space. The all dominant green-house gas is water vapor but CO2 contributes with 2 absorption bands, at 4.3 microns, 9.4, 10,4 and 14.9 microns. The 4.3 micron absorption is of almost no importance since it occurs at a wavelength where very little radiation is available, neither from the sun, nor from the earth’s black body radiation.

Let us take a closer look at the outgoing black body radiation and the atmospheric window:

The first thing to notice is that no absorption exceeds 100% , so at 14.9 micron wavelength CO2 absorbed 100%, and water vapor absorbed another 80%, the total sum is still 100%. It is impossible to absorb more than 100% of the total energy available for that wavelength. Therefore between the wavelengths 14 and 16 microns all energy was absorbed regardless of CO2 concentration and water vapor concentration. The olive area represents the extra absorption of CO2 at 280 ppm when the water vapor is taken out (you cannot absorb more than 100%). The small yellow slivers represent the extra CO2 absorption at 560 ppm. The white area between the brown total absorption area and the red earth emission line is the total emitted energy through the atmospheric window. Methane and N2O gas greenhouse absorption occur at wavelengths where water vapor already absorbs nearly 100%, so their contribution to greenhouse gases is negligible. Likewise Ozone absorption occurs where O2 also absorbs. From the picture below (thanks, NASA) we can see that the total amount of energy escaping through the atmospheric window from clouds and from the ground is on average (29.9 + 40.1) = 70 W/m2. In pre-industrial times the value would have been around 70.7 w/m2.

NASA update 9 August 2019

NASA has made a good estimate of the earth’s energy budget. Total incoming energy is 340.4 W/m2 and escaping through the atmospheric window is 70 W/m2, or 20.56%. Before the industrial age the value was about 70.7 W/m2 or 20.77%, an increase of 0.24%. A black body radiation is proportional to the fourth power of absolute temperature (Kelvin). The current average temp on earth is 287 degree Kelvin, so the temperature rise since pre-industrial times from the sum of increasing CO2, Methane, Nitrous oxide and ozone is 287 * fourth root of (1-0.0024) = 286.83 K, or 0.17 degree Celsius less.

This is but a small portion of the temperature rise experienced, and it so happens that there exists a good measuring point, where the all dominant greenhouse gases are CO2, Methane, NO2 and O3. At the South Pole in the winter the air is clean, there is almost no water vapor and the winter temperature at the Amundsen–Scott South Pole Station between April and September 2021, a frigid minus-78 degrees (minus-61 Celsius), was the coldest on record, dating back to 1957, and the trend is 1 C colder per century. In the summer the trend is increasing temperatures.

4a. The greenhouse effect of water vapor.

In the rest of the world the dominant greenhouse gas is water vapor, H20 and is responsible for most of of the greenhouse effect. The increase of absorption occurs in the atmospheric window, and in some bands of the incoming sunlight in the near infrared region. The bands are 0.7, 0.8, 0.9, 1.1, 1.4 and 1.9 μm. Together, they make up 92% of the greenhouse gas temperature rise, or about 30 degree C. When global temperatures increase by 1,5 C there will be 10% more water water vapor assuming relative humidity will stay constant, there will be an additional 0.45 C temperature rise. Water vapor is fundamental and the additional gases will be added, but even if the gases, notably CO2 in the 13.5 through 16.5 micron absorb 100% of the available radiation, water vapor has already absorbed more than half of the available energy, the total is still 100%.

4b. The greenhouse effect of CO2.

Besides the absorption window in the 14,9 micron that absorbs 100% of the available energy water is fundamental and the majority of the energy is already absorbed. But there are smaller absorption in the 10.5, 9.5 and 4.3 micron. The 10.5 and 9.5 micton wavelrenth do not saturate they participate with their full strength when CO2 increases but the 4,3 micron does. This occurs when the available radiation is lw, co it is of little importance. The total greenhouse effect from CO2 at 280 ppm CO2 is 2.5 C and when CO2 is doubled to 560 ppm the additional temperature rise will be 0.2 C.

4c. The greenhouse effect of Methane.

The methane gas has only one major absorption wavelength at 7.6 microns. This occurs when water vapor is already absorbing 85% of the available energy so the greenhouse effect of Methane is almost negligible. The total greenhouse effect is 0.012 C and if the amount of Methane doubles this will only add 0.006 degrees C to the temperature.

4d. The greenhouse effect of Ozone.

The Ozone gas has only one major absorption wavelength at 9.7 microns, which is almost the same as the absorption for Oxygen. This occurs when Oxygen is already absorbing 80% of the available energy so the greenhouse effect of Ozone is almost negligible. The total greenhouse effect is 0.018 C and if the amount of Methane doubles this will only add 0.0095 degrees C to the temperature.

4e. The greenhouse effect of Nitrous Oxide.

The N2O gas has only one major absorption wavelength at 7.7 microns, which is almost the same as the absorption for Methane. This occurs when water vapor is already absorbing 85% of the available energy so the greenhouse effect of N2O is almost negligible. The total greenhouse effect is 0.009 C and if the amount of Methane doubles this will only add 0.005 degrees C to the temperature.

Summary of greenhouse gases:

H2O: Responsible for 30 degrees global warming; When temperature rises 1.5 degrees the direct effect is a 0.45 degree Celsius temperature rise from water vapor. CO2:: Responsible for 2.5 degrees global warming; When concentration doubles from 280 ppm to 560 ppm the direct effect is a 0.2 degree C temperature rise from CO2. CH4: Responsible for 0.012 degrees global warming; When concentration rises from 750 ppb to to 1800 ppb the direct effect is a 0.007 degree C temperature rise. N2O: Responsible for 0.009 degrees global warming; When concentration increases from 280 ppb to 340 ppb the direct effect is a 0.001 degree C temperature rise. O3: Responsible for 0.018 degrees global warming; When concentration dpobles, the direct effect is a 0.009 degree C temperature rise.

The temperature increase from increased greenhouse gases total less than half of the temperature increase observed since pre-industrial times, and the contribution from CO2 is about one seventh of the total so something else must have caused the increase, and the answer lies in looking to the skies. Water vapor is a condensing gas, and when water vapor is saturated and there are enough aerosols (from air pollution or aerosols released from trees or plants) in the air clouds will appear. How much can be attributed to changing cloud patterns and land use changes?

5. The effect from decreasing cloud cover.

White = 100% cloud cover, Dark blue = o% cloud cover

This is a world map showing the average cloud cover in August 2009. It shows the cloud free areas of the earth in blue. Another way to look at it is to see how much total water vapor there is in the atmosphere:

Nowhere on earth can it rain out more than two inches without more humidity being transported in from another place. Over the ocean humidity gets replenished by evaporation, over land only areas that has vegetation or swamps or lakes will replenish humidity by evaporation. Keep these charts in mind for later. For now concentrate on the decreasing average cloud cover. It has only been measured for the last 40 years, but here are the results:

There are many different clouds, low, mid-level and high clouds, and they have changed differently over the same time span:

Of these clouds, the low level clouds are reflecting the most, so the 2.4% loss in average cloud cover is an assumption on the low side on the loss of reflection.

In 1984 the average cloud cover was 63.7%, in 2019 it was 61.1%, a loss of 2.6%. The total reflection from clouds and atmospheric scattering is 77 W/m2, of which 60 is from cloud reflection. A 2.6% loss of area of reflection leads to a decreasing of incoming energy of 60 * 0.026 = 1.56 W/m2. This results in a temperature increase to 287 * fourth root of (1- (1.56 / 340)) = 287.33 K, or 0.67 degree Celsius.

When temperature increases by 0.67C water vapor increases by 4% on average; the total absorption of water vapor increases by 0.8 W/m2, mostly by shrinking the atmospheric window. This amounts to 0.24% 0f the total incoming solar radiation. The current average temp on earth is 287 degree Kelvin, so the temperature rise since pre-industrial times from increasing H2O levels is 287 * fourth root of (1-0.0024) = 286.83 K, or 0.17 degree Celsius less.

6. The effects from air and water pollution. . a. The warming of the Northern Arctic region.

North America has great rivers, none greater than the mighty Mississippi. It used to be a meandering river with frequent floods that resulted in depositing its silt over large areas and thus fertilizing the land. The Indians living by the river moved to its new location after the water receded, and they could use the newly fertilized land. After the Louisiana purchase river traffic grew rapidly, but shifting sandbars and the excessively winding river became a problem, so the Mississippi river was converted to be the main transportation artery of the middle USA, the river banks were reinforced and the course of the river straightened. This meant that more of the silt was transported out into the Mexican Gulf, some of the silt that used to fertilize the soil instead fertilized the Mexican gulf. In addition, the Mississippi river used to be very polluted, but is now clean enough that it can be used for drinking water after treatment all the way down into Louisiana. There remains elevated concentration of nitrogen compounds so the Mexican Gulf suffers from excessive algae blooms and even red tide from time to time. This leads to more cloud formation and more rain in the United States east of the 98th meridian. This also occurs in Northern Europe, especially in the North Sea; the rivers flowing into the North Sea are rich in nutrients. The Baltic Sea was near oxygen death, but after the Baltic countries and Poland joined the EU, their rivers got partially cleaned up. In the far East the Yellow Sea and the South China sea are suffering major pollution. All these regions produce more clouds, and through prevailing winds some end up in the Arctic, where they snow out, except in the Summer when they rain out except on Greenland where it snows 12 months of the year. This leads to increasing winter temperatures of about 5.5 C above the 80th latitude, 2.5 C in spring and fall and a decrease of about 0.5 C in the summer (it takes a long time to melt that extra snow). This affects about 4% of the earth’s surface, so the total temperature increase from over-fertilizing the rivers is 0.04 * 2.5 = 0.1 C. No such effect occurs in the Antarctic. To illustrate the current yearly temperature trend in the Arctic, see this current polar temperature chart:

Even more illustrative is the development of ice on Greenland. In 2012 it looked like all of Greenland was going to melt in less than 1000 years, and the polar ice cap would be gone altogether in late summer of 2020. The ice over Greenland is now growing ever so slightly again:

b. The effect of various air pollution.

The major effect from air pollution is that it generates aerosols that act as condensation points for cloud formation if the air is oversaturated with moisture. In the last 40 years the air has gotten cleaner in the industrial west, not so much in China, South Asia and Africa. The net result was a 2 % drop in cloud cover and the resulting temperature rise is already accounted for. There are no good worldwide analyses of ancient cloud cover, but air pollution was rising rapidly until the clean air act, enacted in 1963 was beginning to show results in the 70’s. However, ancient method of heating with coal, wood, peat and dried cow cakes was far more polluting and harmful to your lungs. If U.S is eliminating all remaining coal plants the CO2 will still be rising since China is planning to build another 1070 coal burning power plants, and their coal is inferior to ours and their pollution control is far less strict than ours resulting in more aerosols over China and some of the soot to be transmitted all the way to the Arctic, resulting in a black layer of soot on old snow and old ice.

This is the official IPCC AR5 assessment of forcing factors, and we can see that CO2 is over-estimated by a factor of 2.5 and Methane by a factor of 10. When this is taken into account the net forcing from all other factors is neutral within the margin of uncertainty.

c. The effect of greening of most of the earth.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, done with only the fertilizer of CO2, the earth can now keep another 2 billion people from starvation, not to mention what good it does for plants and wildlife.

The greening of the earth should cause temperature to increase, but if there is enough moisture in the earth the evapotranspiration from the leaves have a cooling effect and more than offsets the lower albedo from green leaves versus dry earth. In addition, with rising CO2 levels the leaves need less water to perform the photosynthesis, so the net result from lowering the albedo by 0.05 over 17% of the world leads to a heating of the earth. The average albedo of the earth is 30%, and 17% of the earth lowers the albedo by 5% this lowers the total albedo of the earth by 0.8%.

The total reflection of sunlight from the earth is 22.9 W/m2, so 0.8% of that is 0.18 W/m2, which translates to a net temperature increase of 287 * fourth root of (1 + (0.008 / 340)) = 287.33 K, or 0.017 degree Celsius.

d. The areas that are becoming more like a desert.

Most of the earth displays an increase of leaf area, but there are areas in red that are becoming less green. The areas are: The American Southwest, The Pampas area of South America, a 100 mile band in Southern Sahara, part of East Africa, Madagascar, South East Africa, Western Australia, Part of the Volga region, Kazakhstan east of Lake Aral and various parts of China, and the Mekong river. These areas have this in common, the aquifers ate being depleted, the rivers are diminishing and some of them no longer reach the ocean, lakes are almost disappearing, but people still move to those areas “for the good climate”.

The areas so affected are about 900,000 sq miles of the American Southwest and about 3 million square miles total to suffer from becoming more like a desert. The common theme of all these areas is depletion of the aquifers, rivers diminishing, lakes drying up and soil erosion.

The only part of the world US can control directly is The American Southwest. It can expect more frequent and longer droughts, since there is no amplification of clouds from the relatively cool and clean Pacific ocean, and the long term temperature trend is cooling. The Colorado River no longer feeds the Gulf of California with nourishment. The Colorado river used to all the water allocation for all the participating states, but around 2000 the water use had caught up with supply, and since then it has become much worse with demand far outstripping supply.

In addition the Great Salt Lake is now less than a third of the size it was in the 1970’s. A second level water shortage has been issued, and for example Arizona will get a million Acre-feet lass per year from the river. The aquifers will be further depleted leading to less rainfall and the few remaining springs will dry out. If nothing is done, the American southwest will become desertified.

Ironically, deserts have a higher albedo than green soil, so letting the American Southwest become a desert would have a cooling effect by the increasing albedo, but the effect from the disappearing clouds would have a far greater heating effect, so letting the American Southwest become a desert is not a solution to the problem.

However, the area subject to desertification is about 0.6% of the world’s land area and rising the albedo by 0.05 leads to a cooling down. The average albedo of the earth is 30%, and before desertification the albedo was 25%, this rises the albedo of the earth by 0.03%. The total reflection of sunlight from the earth is 22.9 W/m2, so 0.03% of that is 0.007 W/m2, which translates to a net temperature decreasee of 287 * fourth root of (1- (0.007/ 340)) = 286.9995 K, or a cool down of 0.0005 degree Celsius.

The total temperature change since before industrialisation:

Direct effect from rising CO2: 0.20C

Increasing water vapor from 1.5 C rising temperature: 0.45C

Effect from rising Methane: less than 0.007C

Effect from rising N20: 0.01C.

Effect from rising ozone: Probably zero.

Temperature rise from decreasing cloud cover 0.67C

Temperature increase from greening of the earth 0.017C

Temperature decrease from areas of desertification 0.0005C

Net temperature rise from other pollutants: Probably 0.05 C

TOTAL TEMPERATURE RISE since the little ice age: 1.4C and that is about where we are today.

7. To reverse desertification, change the water rights laws!

In the Bible the first treaty signed was over water rights. It was between Abraham and Abimelek and was about a well that Abraham’s servants had dug and Abimelek’s men has seized. To make sure Abraham was the owner of the well Abraham and Abimelek confirmed it with an oath. The place is called Beersheba and Abraham planted a tamarisk tree there. Since then, in arid regions the fight has always been about water and water rights. In the American Southwest there are many Indian reservations, and when the white man came in they took the water upstream from the rivers and the Indians lost their livelihood. Here is a song by Johnny Cash:

The rain belongs to the land on which it rained. There are many reasons why that should be so. In higher elevation temperature is lower and evaporation much lower. The best solution is to build swales to contain small amount of rainwater where appropriate. This will restore aquifers and make it possible to plant indigenous trees and bushes that will lower the soil temperature by providing shadow. It will also provide aerosols, especially from pine trees that will increase rainfall when conditions are right. In addition it will lessen erosion. The immediate result is that the rivers will get less water, but in time the rivers will provide a more even and increased flow.

8. What congress is doing to solve the problem.

Congress has passed the anti-inflation bill that included over 300 billion to fight climate change, and it included more solar panels and wind turbine motors to be imported from China. The experience from Europe is that electricity from solar panels and windmills is 5.7 times more expensive than conventional power generation.

This analysis was done for 2019, before COVID. The situation is much worse now, with electricity rares up to 80 c/kWh, topping $1 /kWh this winter in some countries.Even at the current increased European Gas prices, the estimated excess expenditures on Weather-Dependent “Renewables” in Europe is still very large:  $~0.5 trillion in capital expenditures and $~1.2 trillion excess expenditures in the long-term.

These simple calculations show that any claim that Wind and Solar power are now cost competitive with conventional fossil fuel (Gas-fired) generation are patently false.  The figures give an outline of the financial achievements of Green activists in stopping  fracking for gas in Europe, close on to $1.2 trillion of excess costs.It would be better not to import any solar panels and wind power generators from China and let them pay for the extra cost rather than building more coal burning plants. After all they were planning to build over a thousand new plants between now and 2030, all legal under the Paris accord. This would benefit the world climate much more, since Chinese coal plants are far more polluting, since China has far less stringent environmental regulations than U.S.U.S. uses 13.5% of the world’s coal, and eliminating U.S. CO2 emissions would in time reduce the world temperature by 0.023C, providing no other country, such as China or India would increase their use of Coal, which they are, to the total of 1300 new coal plants between now and 2030. This would raise global temperature by more than 0.06 C.

In fairness, conditions in the American Southwest are much more favorable for this type of development, but it is still unfavorable when taken into account that all conventional power generation must still be teare when the wind doesn’t blow and the sun doesn’t shine.

What congress should do instead. a. What congress should do immediately.

  1. Immediately stop downblending U 233 and pass The Thorium Energy security act SB 4242a. See more here.

2. Remove Thorium from the list of nuclear source material. The half-life of Thorium232 is 14 billion years, so its radioactivity is barely above background noise. More importantly, while Thorium is fertile, it is not fissile and should therefore not be included in the list. This would make it far easier to mine rare earth metals, as long as the ore consists of less than 0.05% Uranium, but any amount of Thorium is allowed without classifying the ore “Source material”.3. Separate nuclear power into 3 categories. a. conventional nuclear power. b. Thorium breeder reactors that make more U233 than it consumes, and c. Thorium reactors that reduce nuclear waste.4. Stop buying solar panels from China. Stop buying wind turbine generators from China. Let them install those in China and pay 5 times as much for their electricity.5. Immediately form a commission led by competent people, not politicians; to decide how to best expand the electric grid and to best harden it against electro-magnetic pulses, whether solar or nuclear and to safeguard it against sabotage.6. Remove all subsidies on electric cars, solar panels and wind generators, but continue to encourage energy conservation.7. Encourage research and development of Thorium fueled reactors, especially liquid salt reactors by drastically simplifying and speeding up the approval process. President Trump issued an executive order in the last month of his presidency EO 13972 specifying that the United States must sustain its ability to meet the energy requirements for its national defense and space exploration initiatives. The ability to use small modular reactors will help maintain and advance United States dominance and strategic leadership across the space and terrestrial domains. This EO should be expanded to include civilian small modular reactors, including Liquid salt Thorium reactors less than 200 MW, which are the only valid reactors for space exploration.

b. Longer term developments, but extremely urgent.

Of the long term warming of the globe of 1.4 C since the beginning of industrialization only 0.20 C is attributable to rising CO2, NH4 and NO2 levels, of which United states is currently responsible for 13.5% and decreasing, or 0.027C. The disappearance of clouds is responsible for three times as much globally or 0.67 C of which probably 1/6 is occurring in the American Southwest, causing an increase in temperature of 0.11C. However, the temperature rise in say the Grand Canyon has been in excess of 2 C,, and in the urban areas it has risen even more. These are my long term suggestions:

Build a TransContinental Aqueduct. A realistic way to save Lake Mead and reverse the desertification of the American SouthWest. The problem:Lake Mead will be emptied in less than 10 years with the current usage pattern. Then what?The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.The aquifers in Arizona, especially in the Phoenix and Tucson area, and to some extent New Mexico and the dry part of Texas are being drawn down and are at risk of being exhausted.The Salton Sea in the Imperial Valley of California is maybe the most polluted lake in all of U.S.A. It is even dangerous to breathe the air around it sometimes. The area contains maybe the largest Lithium deposit in the world.The Colorado River water is too salty for good irrigation .The Colorado river no longer reaches the Gulf of California. Fishing and shrimp harvesting around the Colorado River Delta is no more. 40 million people depend on the Colorado River for drinking water. The population is still rising rapidly in the West. Will they have water in the future? Except for California there is not much pumped Hydro-power storage in the American Southwest.Texas has plenty of wind power, but no pumped hydro-power storage. This makes it difficult to provide peak power when the sun doesn’t shine and the wind doesn’t blow. Nuclear power is of no help, it provides base power only. Peak power has to come from coal and natural gas plants.New Mexico has some ideal spots for solar panels, but no water is available for pumped storage.Arizona has a surging population, wind and solar power locations are abundant, but no pumped hydro-power storage. Arkansas and Oklahoma have a good barge traffic system. This proposal will increase flood control and improve barge traffic by increasing the maximum barge draft from 9 feet to 12 feet and during dry periods reverse the flow of the Arkansas River. The Arkansas river yearly water flow is nearly double that of the Colorado River.

The solution:Build a transcontinental aqueduct from the Mississippi River to the Colorado River capable of transporting 12 million acre-ft of water yearly through Arkansas, Oklahoma, Texas, New Mexico and Arizona. It will be built similar to the Central Arizona Project aqueduct, that is supplying water from the Colorado river to the Phoenix and Tucson area, but this aqueduct will be carrying four times more water over four times the distance and raise the water nearly twice as high before returning to near sea level. The original Central Arizona Project did cost $4.7 billion in 1980’s money, the Transcontinental Aqueduct will in Phase 1 cost around $200 Billion in 2023 money applying simple scaling up principles.The Mississippi River has a bad reputation for having polluted water, but since the clean water act the water quality has improved drastically. Fecal coli-form bacteria is down by a factor of more than 100, the water is now used all the way down to New Orleans for drinking water after treatment. The lead levels are down by a factor of 1000 or more since 1979. Plastic pollution and pharmaceutical pollution is still a problem, as is the case with most rivers. The Ph value is back to around 8 and salt content is negligible. Mississippi water is good for irrigation, and usable for drinking water after treatment. The Arkansas River is used as a drinking water source. But the aqueduct will do more than provide sweet Mississippi water to the thirsty South-west, it will make possible to provide peak power to Texas, New Mexico and Arizona. In fact, it is so big it will nearly triple the pumped Hydro-power storage for the nation, from 23 GW for 5 hours a day to up to 66 GW when fully built out.The extra pumped hydro-power storage will come from a number of dams built as part of the aqueduct or adjacent to it. The water will be pumped from surplus wind and solar power generators when available. This will provide up to 50 GW of power for 5 hours a day. If not enough extra power has been generated during the 19 pumping hours, sometimes power will be purchased from the regular grid. The other source of pumped hydro-power storage is virtual. There will be up to 23 GW of LFTR (Liquid Fluoride salt Thorium Rector) power stations strategically stationed along the waterway providing pumping of water for 19 hours and providing virtual hydro-power output for the remaining 5, when the aqueduct is fully built.These 43 GW of hydro-power capacity will be as follows: Oklahoma, 0.2 GW; Texas, 18,5 GW (right now, Texas has no hydro-power storage, but plenty of wind power); New Mexico, 10.5 GW; Arizona 13.6 GW. In Addition, when the Transcontinental Aqueduct is fully built out, the Hoover dam can provide a true 2.2 GW hydro-power storage by pumping water back from Lake Mojave; a 3 billion dollar existing proposal is waiting to be realized once Lake Mead is saved.The amount of installed hydroelectric power storage is:

U.S. operating hydroelectric pumped storage capacity

Most hydroelectric pumped storage was installed in the 70’s. Now natural gas plants provide most of the peak power. This aqueduct will more than double, triple the U.S. pumped peak storage if virtual peak storage is included. By being pumped from surplus wind and solar energy as well as nuclear energy it is true “Green power”. What follows is a description of each leg of the aqueduct. Each leg except legs 9 and 10 ends in a dam, which holds enough water to make each leg free to operate to best use of available electricity and provide peak power on demand.

Leg 1 of the Trans-Continental aqueduct. From the Mississippi river to the Robert S. Kerr Lock and dam on the Arkansas River. Total length 15miles of aqueduct and 305 miles of river. Cost of water 300 kWh per acre-ft.

The Transcontinental Aqueduct will serve the Lower Colorado River Basin, Southern New Mexico and Western Texas. It will pump up to 12 million acre-ft of water annually from the Arkansas river and Mississippi river all the way to southern Colorado River.The total electricity needed to accomplish this giant endeavor is about 60 billion kWh annually. or about one and a half percent of the current US electricity demand. In 2020 the US produced 1,586 billion kWh from natural gas, 956 from coal, 337.5 from wind and 90.9 from solar.For this giant project to have any chance of success there has to be something in it to be gained from every state that will be participating. Here are some of the benefits:

Arizona: Arizona needs more water. The water from Mississippi is less saline and better suited for agriculture and the people growth makes it necessary to provide more water sources. Right now the aquifers are being depleted. Then what? One example: The San Carlos lake is nearly dry half the time and almost never filled to capacity. With the aqueduct supplying water it can be filled to 80 +- 20% of full capacity all the time. In the event of a very large snow melt the lake level can be reduced in advance to accommodate the extra flow. Likewise during Monsoon season the aqueduct flow can be reduced in anticipation of large rain events. Arizona together with New Mexico has the best locations for solar power, but is lacking the water necessary for hydro-power storage. This proposal will give 600 cfs of water to Tucson, 3,100 cfs to the Phoenix area and 3,900 cfs to the lower Colorado River in Phase 1. I phase 2 it will add 3,100 cfs to Lake Havasu and an extra 4,700 cfs to the lower Colorado River. It will also also add 28 GW of hydro-power storage capable of adding 140 GWh of electric peak power daily when it is fully built out in Phase 3.

Arkansas: The main benefit for Arkansas is better flood control and river control of the Arkansas River and allowing it to deepen the draft for canal barges from 9,5 feet to 12 feet, which is standard on the Mississippi river.California: The water aqueduct serving Los Angeles will be allowed to use maximum capacity at all times. Additional water resources will be given the greater San Diego area. The Imperial valley will be given sweet Mississippi and Arkansas River water, which will improve agriculture yield. The polluted New River will be cut off at the Mexico border. There will be water allocated to the Salton Sea. There is a proposal to mine the world’s largest Lithium ore, mining the deep brine, rich in Lithium. (about a third of the world supply according to one estimate). This requires water, and as a minimum requirement to allow mining in the Salton Sea the water needs to be cleaned. This requires further investigation, but the area around the Salton Sea is maybe the most unhealthy in the United States. It used to be a great vacation spot.

Mexico: During the negotiations about who was going to get the water in Lake Mead Mexico did not get enough water, so they have been using all remaining water for irrigation, and no water is reaching the ocean anymore. In addition the water is too salty for ideal irrigation. This proposal will provide sweet Mississippi and Arkansas River water to Mexico, ensure that some water reaches the Colorado river delta. This will restore the important ecology and restore aquatic life in the delta and the gulf. The town of Mexicali will get some water in exchange for shutting off New River completely.

Nevada: Las Vegas is a catastrophe waiting to happen unless Lake Mead is saved. With this proposal there will be ample opportunity to make the desert bloom.

New Mexico: The state is ideally suited for solar panels. In addition to give much needed water to communities along the length of the aqueduct, it will provide 13.5 GW of pumped storage power to be made available at peak power usage for up to 5 hours a day.

Oklahoma: The main advantage for Oklahoma is a much improved flood control. It will provide the same advantage for river barge traffic as benefits Arkansas.

Texas: The state has a big problem. It has already built up too much wind power and can not give up their coal burning power plants until the electricity is better balanced. They have no hydro-electric power storage at all, and we saw the result of that in a previous year’s cold snap. This proposal will give the Texas electric grid 8.8 GW of hydro-electric power for up to 5 hours a day.

Utah: The state will no longer be bound to provide water to Lake Mead, but can use all of its water rights for Utah, especially the Salt Lake City region, and to reverse the decline of the Great Salt Lake that is now shrunk to less than a third of the size it had in the 1970’s.

Wyoming: The state will be free to use the water in the Green River and all the yearly allocated 1.05 million acre-feet of water can be used by the state of Wyoming.

The cost to do all these aqueducts will be substantial, but it can be done for less than 350 billion dollars in 2023 money, and that includes the cost of providing power generation and electric grid enhancement and provide for a more robust electric grid. Considering it involves 40 million people dependent on the Colorado River now and another 10 million east of the Rocky Mountains, it is well worth doing, much more important to do than other “green” projects, since it will save the American Southwest from becoming an uninhabitable desert.

This proposed solution cannot be made possible without changing our approach to power generation. The mantra now is to solve all our power needs through renewables. Texas has shown us that too much wind power without any hydroelectric power storage can lead to disaster. In addition, windmills kill birds, even threatening some species, such as the Golden Eagle and other large raptors that like to build their aeries on top of the generators. Solar panels work best in arid, sunny climate, such as Arizona and New Mexico, but the panels need cooling and cleaning to work best, and that takes water. They are even more dependent on hydro-power storage than wind. The transcontinental aqueduct will triple the hydro-electric power storage for the nation. Without pumped power storage we still need all the conventional power generation capacity for when the sun doesn’t shine and the wind doesn’t blow.Conventional Nuclear power plants doesn’t work in most places since they depend on water for their cooling, and most of these aqueducts pump water in near deserts, and there would be too much evaporation losses to use water from the aqueducts for cooling.The only realistic approach would be to use LFTR power plants. (Liquid Fluoride Thorium Reactors). There are many advantages for using LFTR. Here are 30 reasons why LFTRs is by far the best choice.For this project to succeed there must be developed a better way to build SMRs (Small Modular Reactors, less than 250 MW) more effectively. The price to build a LFTR plant should be less than $2.50 per watt. While the LFTR science is well understood, the LFTR engineering is not fully developed yet, but will be ready in less than 5 years if we get to it. In the mean time there should be built one or more assembly plants that can mass produce LFTR reactor vessels small enough so they can be shipped on a normal flatbed trailer through the normal highway system. My contention is that a 100 MW reactor vessel can be built this way and the total cost per plant will be less than 250 Million dollars. To save the American Southwest we will need about 350 of them, or 87,5 billion dollars total. This cost is included in the total calculation. There will be many more of these plants produced to produce all the electric power to power all the electric vehicles that are going to be built. This is the way to reduce fossil fuel consumption. Just switching to electric vehicles will not do the trick. The electric energy must come from somewhere. To convert all cars and trucks and with unchanging driving habits will require another 600 GW of generating capacity by 2050, our present “net zero emissions” goal.To do this project we need cooperation from all states in providing eminent domain access. The Federal government will need to approve LFTR as the preferred Nuclear process and streamline approval process from many years to less than one year.Some of the power will come from solar panels and wind turbines, which will reduce the need for LFTR’s. One tantalizing idea is to cover the aqueduct with solar panels. This will do many things, it will not take up additional acreage, water needed to keep the panels clean is readily available, and can even be used to cool the solar panels if economically beneficial. The area available is 152 feet times 1100 miles = 1.6 billion square feet, and one square foot of solar panel produces around 1 W, which means covering the aqueduct with solar panels would produce 882 MW of power. It would also reduce evaporation. The second source of energy will be 165,000 5kW vertical wind turbines producing 825 MW when the wind is blowing. The rest of the power will cme from LFTRs. This idea requires further analysis. Here is one possible implementation of the idea:This image has an empty alt attribute; its file name is aqueductcrossection.jpg

C. Further developments to save the American Southwest.

When the Transcontinental aqueduct is well under way it is time to start the Trans-Rocky-Mountain Aqueduct. in a few years the population growth will require again to save Lake Powell and Lake Mead, and rejuvenate the American South-west.The problem:

  1. Lake Powell and Lake Mead will be emptied in less than 10 years with the current usage pattern. Then what?The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.the aquifers are drawn down everywhere in the Southwest, but also the Ogallala Aquifer in Colorado and Kansas, and are at risk of being exhausted.The Colorado River water is too salty for good irrigation .The Colorado river no longer reaches the Gulf of California. Fishing and shrimp harvesting around the Colorado River Delta is no more.40 million people depend on the Colorado River for drinking water. The population is still rising rapidly in the West. Will they have water in the future? Think 20 million future population growth in the next 40 years, people want to move there even with the current water problems.

The solution:Build a Trans-Rocky-Mountain aqueduct from the Mississippi River to the San Juan River. In the first 391 miles the aqueduct joins the McClellan–Kerr Arkansas River Navigation System by adding the capability of pumping 7,500 cfs of water through 16 dams that service the locks. This will lead to reversing the flow of water during low flow. This also facilitates the navigation channel to be deepened from 9 feet to 12 feet to service fully loaded barges, a step authorized but not funded by Congress. The Arkansas river will then be capable of transporting 8 million acre-ft of water yearly through Arkansas, Oklahoma, Kansas, Colorado and New Mexico, supplying water from the Colorado river to Lake Powell. All that is needed to do in this stage is provide the dams and locks with a number of pumps and pump/generators to accommodate this, at a cost of less than 2 billion dollars. The next phase is pumping up water in the Arkansas river for 185 miles. To accommodate this there will be 17 small control dams built that are closed when normal pumping occurs and open during flood conditions. The cost for this segment, including pumps will be less than 3 billion dollars. The third segment is a 465 mile aqueduct to cross the Rocky Mountains much like the Central Arizona project but this aqueduct will carry three times more water 1.27 times the distance and raise the water four times higher. The original Central Arizona Project cost $4.7 billion in 1980’s money, the aqueduct part of the Trans-Rocky-Mountain aqueduct will cost around $50 Billion in 2021 money applying simple scaling up principles.Power requirements for the 3 stages are 310 MW for the canal stage, 600MW for the river stage and 6.2 GW for the aqueduct stage. The aqueduct stage can be controlled by the power companies to shut off the pumps and provide 6.4 GW of virtual peak power for up to 5 hours a day on average, and each leg can be controlled individually since they are separated by large dams. There will be 64 one hundred MegaWatt LFTR (Liquid Fluoride salt Thorium Rector) power stations strategically stationed along the waterway providing pumping of water for 19 hours and providing virtual hydro-power output for on average 5 hours. There will also be 910 MW of power needed that is controlled by the river authorities.The building cost of providing LFTR power should be around $2.50 per Watt of installed energy if a plant is built to manufacture via an assembly line a standardized version of 100 MW LFTR reactor core vessels assemblies capable of being transported on truck to the installation point. The total power cost should then be 16 billion dollars to build, and 5 cents per kWh or about 2.5 billion dollars a year to provide power.The Mississippi River has a bad reputation for having polluted water, but since the clean water act the water quality has improved drastically. Fecal coli-form bacteria is down by a factor of more than 100, the water is now used all the way down to New Orleans for drinking water after treatment. The lead levels are down by a factor of 1000 or more since 1979. Plastic pollution and pharmaceutical pollution is still a problem, as is the case with most rivers. The Ph is back to around 8 and salt content is negligible. Mississippi water is good for irrigation, and usable for drinking water after treatment. The Arkansas River water quality is pretty good, good enough in Kaw Lake to be used for municipal water supply. Nitrates and phosphates are lower than in most Eastern rivers, Ph is around 8 and coli-bacteria low.Most hydroelectric pumped storage was installed in the 70’s. Now natural gas plants provide most of the peak power. This aqueduct will add 6.4 GW to the U.S. pumped peak storage if virtual peak storage is included. By being pumped from surplus wind and solar energy as well as nuclear energy it is true “Green power”. Some people like that.What follows is a description of each leg of the aqueduct. Legs 3, 4, 5 and 6 ends in a dam, which holds enough water to make each leg free to operate to best use of available electricity and provide peak power on demand.

Leg 1 of The Trans-Rocky-Mountain aqueduct. From the Mississippi river to Webbers Falls lock and dam. Total length 15miles of aqueduct and 335 miles of river. Cost of water 333 kWh per acre-ft.

Leg 2 of The Trans-Rocky-Mountain aqueduct. From Webbers Falls to Keystone Dam, a distance of about 75 miles that is river and 25 miles, which is canal. Cost of water 593 kWh per acre-ft

.Leg 3 of the Trans-Rocky-Mountain aqueduct. From Keystone Dam to Kaw Dam.The Keystone Lake is 38 miles long and the river part is about 110 miles. Cost of water 901 kWh per acre-ft.

Leg 4 of the Trans-Rocky-Mountain aqueduct. From Kaw Lake to John Martin Reservoir, a distance of about 200 miles. Cost of water 4,446 kWh per acre-ft.

Leg 5 of the Trans-Rocky-Mountain aqueduct. From John Martin Reservoir to Trinidad Lake, a distance of about 120 miles. Cost of water 7,300 kWh per acre-ft.

Leg 6 of the Trans-Rocky-Mountain aqueduct. From Trinidad Lake to Abiquiu Reservoir, a distance of 90 miles. Cost of water 7,910 kWh per acre-ft.

Leg 7 of the Trans-Rocky-Mountain aqueduct. From the Abiquiu Reservoir to the San Juan River, a distance of 55 miles. Cost of water 7,395 kWh per acre-ft.Once these two aquifers are completed and running successfully filling the rivers again it is time to refill the aquifers. This requires a change in the water rights laws. The rain water is a property of the land and can be locally retained via small catch basins and swales. This will restore the aquifers, reduce soil erosion and rejuvenate vegetation as has been successfully done in the dry parts of India. They needed to capture the monsoon rains, and so does Arizona and New Mexico.

One more thing: Build a South Platte River aqueduct. This will solve the water needs for the greater Denver ares and help preserve the northern Ogallala aquifer.The rise in CO2 is on balance positive, it has already helped to keep 2 billion people from starvation. With food famine coming the very worst thing we can do is declare a climate emergency and unilaterally reduce our electric supply eliminating much of our fossil fuel source to produce electricity and at the same time push electric cars.This cannot be solved unless there will be a deep commitment to Nuclear power, streamline government permit processes and let private industry find the best solutions without government playing favorites and slowing down the process. Regular U235 power is not sufficient for this, Only Thorium power will do, and there are many reasons for it.

Here are 30 of them: 1. A million year supply of Thorium available worldwide.  2. Thorium already mined, ready to be extracted.  3. Thorium based nuclear power produces 0.012 percent as much TRansUranium waste products as traditional nuclear power.  4. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.  5. Thorium nuclear power is only realistic solution to power space colonies.  6. Radioactive waste from an Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick. 7. Thorium based nuclear power is not suited for making nuclear bombs.  8. Produces isotopes that helps treat and maybe cure certain cancers.  9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown. 10. Molten Salt Liquid Fluoride Thorium Reactors cannot have a meltdown, the fuel is already molten, and it is a continuous process. No need for refueling shutdowns. 11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control. 12. Atmospheric pressure operating conditions, no risk for explosions. Much safer and simpler design. 13. Virtually no spent fuel problem, very little on site storage or transport. 14. Liquid Fluoride Thorium Nuclear reactors scale beautifully from small portable generators to full size power plants. 15. No need for evacuation zones, Liquid Fuel Thorium Reactors can be placed near urban areas. 16. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants. 17. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid. 18. Russia has an active Thorium program. 19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.  20. China is having a massive Thorium program. 21. United States used to be the leader in Thorium usage. What happened? 22. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen .23. With a Molten Salt Reactor, accidents like Chernobyl are impossible. 24. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen. 25. Will produce electrical energy at about 4 cents per kWh. 26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles. 27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed. 28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill. 29. President Donald J. Trump on Jan. 5 2021 issued an Executive Order on Promoting Small Modular Reactors for National Defense and Space Exploration. Only Liquid fluoride thorium reactors can meet all the needs. 30. We have to switch from Uranium to Thorium as nuclear feed-stock. We are running out of domestic Uranium.

My favorite Thorium power plant would be a 100 MW Liquid Fluoride Thorium Reactor (LFTR). It is also called a Small Modular Reactor (SMR). It is small enough that all core elements will fit in three standard truck containers and be made on an assembly line. It can be constructed many ways, one is a normal fast breeder reactor, another is adapted to burn nuclear waste. The cost for these reactors, when built on an assembly line will be less than $2.50 per Watt. They can be placed anywhere, since they are inherently safe, no need for an evacuation zone. Since they are operating at 500C temperature with either gas or liquid lead as heat transfer media there is no need for water as a cooling medium. When mass produced it will be able to produce electricity at 5 c per kWh and the mining to produce the materials is a fraction of what is needed for solar, and wind power, especially when taking into account the intermittent nature of these power sources.The only thing better would be fusion power, but that is at least somes years away as a power producing source, but it is coming. These are exciting times!

The American Southwest can still be saved.

Global warming is real. Less than 20% is due to CO2 increase, Less than 1% is due to Methane increase. A much better way to spend 300 billion dollars is to solve the water problem of the thirsty and sunny American Southwest.

1. The greenhouse effect increase.

The Earth has warmed 1.1 to 1.2 degree Celsius since the little ice age, coinciding with the beginning of the industrial age and the rate of increase increase is increasing. To better understand how much of this warming is due to greenhouse gases look at this chart:

From this chart we can see that water vapor is by far the most important greenhouse gas, followed by CO2 with Methane and Nitrous oxide far behind. Oxygen is part of the atmosphere, and so is Nitrogen and their concentrations are assumed to be constant. Ozone concentration is too small to have any effect. Raleigh scattering is why the sky is blue and it is constant regardless of other factors.

Before we go any further let’s examine one absorption band for CO2, the 14,9 μm band. at a concentration of 400 ppm it is fully saturated from 14 to 16 μm and tapers off from there, see picture:

The black band shows the difference in total absorption from CO2 concentration of 280 ppm to 400 ppm.

The white area under the shaded area is the absorption at 280 ppm. The shaded area is the additional absorption at 400 ppm, an increase of 6%. The reason it is not more is that it is impossible to absorb more than 100% of the total energy available for that wavelength. Therefore between the wavelengths 14 and 16 microns all energy was absorbed regardless of CO2 concentration.

. But the top chart is deceiving, for it does not fully explain the net effect on radiation, from the sun or from the earth. The chart below is much better:

The incoming solar radiation includes ultraviolet radiation, visible light and near infrared radiation. This is all the heat incoming to the earth, except the heat that is radiating from the earth’s core. All area under the curves of the right halves represent greenhouse gases absorption, except the blue area which represents energy radiated into space under a cloud-free sky. The all dominant geenhouse gas is water vapor but CO2 contributes with 2 absorption bands, at 4.3 microns and 14.9 microns. The 4.3 micron absorption is of almost no importance since it occurs at a wavelength where very little radiation is available, neither from the sun, nor from the earth’s blackbody radiation, but water vapor absorbs nearly all radiation anyhow. The only wavelength that counts for CO2 absorption is at 14.9 microns, because it occurs in the so called atmospheric window and the blackbody radiation is near its maximum.

Let us take a closer look at the outgoing blackbody radiation and the atmospheric window:

The first thing to notice is that no absorption exceeds 100% , so at 14.9 micron wavelength CO2 absorbed 100%, and water vapor absorbed another 80%, the total sum is still 100%. It is impossible to absorb more than 100% of the total energy available for that wavelength. Therefore between the wavelengths 14 and 16 microns all energy was absorbed regardless of CO2 concentration and water vapor concentration. The olive area represents the extra absorption of CO2 at 280 ppm when the water vapor is taken out (you cannot absorb more than 100%). The small yellow slivers represent the extra CO2 absorption at 400 ppm. The white area between the brown total absorption area and the red earth emission line is the total emitted energy through the atmospheric window. Methane and N2O gas greenhouse absorption occur at wavelengths where water vapor already absorbs nearly 100%, so their contribution to greenhouse gases is negligible. Likewise Ozone absorption occurs where O2 also absorbs. From the picture below (thanks, NASA) we can see that the total amount of energy escaping through the atmospheric window from clouds and from the ground is on average (29.9 + 40.1) = 70 W/m2. In pre-industrial times the value would have been around 70.7 w/m2.

NASA update 9 August 2019

NASA has made a good estimate of the earth’s energy budget. Total incoming energy is 340.4 W/m2 and escaping through the atmospheric window is 70 W/m2, or 20.56%. Before the industrial age the value was about 70.7 W/m2 or 20.77%, an increase of 0.24%. A black body radiation is proportional to the fourth power of absolute temperature (Kelvin). The current average temp on earth is 287 degree Kelvin, so the temperature rise since pre-industrial times from the sum of increasing CO2, Methane, Nitrous oxide and ozone is 287 * fourth root of (1-0.0024) = 286.83 K, or 0.17 degree Celsius less.

This is but a small portion of the temperature rise experienced, and it so happens that there exists a good measuring point, where the all dominant greenhouse gases are CO2, Methane, NO2 and O3. At the South Pole in the winter the air is clean, there is almost no water vapor and the winter temperature at the Amundsen–Scott South Pole Station between April and September 2021, a frigid minus-78 degrees (minus-61 Celsius), was the coldest on record, dating back to 1957, and the trend is 1 C colder per century. In the summer the trend is increasing temperatures.

In the rest of the world the dominant greenhouse gas is water vapor, H20 and is responsible for most of of the greenhouse effect, and some of it can be attributed to the warming caused by increasing CO2 levels that warmed the world 0,17C, and if the relative humidity stays the same this leads to an increase in water vapor of about 1 % on average. The increase of absorption occurs in the atmospheric window, and in some bands of the incoming sunlight in the near infrared region. The bands are 0.7, 0.8, 0.9, 1.1, 1.4 and 1.9 μm. Together, when water vapor increases by 1% on average the total absorption of water vapor increases by 0.2 W/m2, mostly by shrinking the atmospheric window. This amounts to 0.06% 0f the total incoming solar radiation. The current average temp on earth is 287 degree Kelvin, so the temperature rise since pre-industrial times from increasing H2O levels is 287 * fourth root of (1-0.0006) = 286.95 K, or 0.05 degree Celsius less.

The temperature increase from increased greenhouse gases total only 20% of the temperature increase since pre-industrial times, so something else must have caused the increase, and the answer lies in looking to the skies. Water vapor is a condensing gas, and when water vapor is saturated and there are enough aerosols (air pollution) in the air clouds will appear. How much can be attributed to changing cloud patterns?

2. The effect from decreasing cloud cover.

White = 100% cloud cover, Dark blue = o% cloud cover

This is a world map showing the average cloud cover in August 2009. It shows the cloud free areas of the earth in blue. Another way to look at it is to see how much total water vapor there is in the atmosphere:

Nowhere on earth can it rain out more than two inches without more humidity being transported in from another place. Over the ocean humidity gets replenished by evaporation, over land only areas that has vegetation or swamps or lakes will replenish humidity by evaporation. keep these charts in mind for later. For now concentrate on the decreasing average cloud cover. It has only been measured for the last 40 years, but here are the results:

There are many different clouds, low, mid-level and high clouds, and they have changed differently over the same time span:

Of these clouds, the low level clouds are reflecting the most, so the 2.4% loss in average cloud cover is an assumption on the low side on the loss of reflection.

In 1984 the average cloud cover was 63.7%, in 2019 it was 61.1%, a loss of 2.6%. The total reflection from clouds and atmospheric scattering is 77 W/m2, of which 60 is from cloud reflection. A 2.6% loss of area of reflection leads to a decreasing of incoming energy of 60 * 0.026 = 1.56 W/m2. This results in a temperature increase to 287 * fourth root of (1- (1.56 / 340)) = 287.33 K, or 0.67 degree Celsius.

When temperature increases by 0.67C water vapor increases by 4% on average; the total absorption of water vapor increases by 0.8 W/m2, mostly by shrinking the atmospheric window. This amounts to 0.24% 0f the total incoming solar radiation. The current average temp on earth is 287 degree Kelvin, so the temperature rise since pre-industrial times from increasing H2O levels is 287 * fourth root of (1-0.0024) = 286.83 K, or 0.17 degree Celsius less.

3. The effects from air and water pollution. . a. The warming of the Northern Arctic region.

North America has great rivers, none greater than the mighty Mississippi. It used to be a meandering river with frequent floods that resulted in depositing its silt over large areas and thus fertilizing the land. The Indians living by the river moved to its new location after the water receded, and they could use the newly fertilized land. After the Louisiana purchase river traffic grew rapidly, but shifting sandbars and the excessively winding river became a problem, so the Mississippi river was converted to be the main transportation artery of the middle USA, the river banks were reinforced and the course of the river straightened. This meant that more of the silt was transported out into the Mexican Gulf, some of the silt that used to fertilize the soil instead fertilized the Mexican gulf. In addition, the Mississippi river used to be very polluted, but is now clean enough that it can be used for drinking water after treatment all the way down into Louisiana. There remains elevated concentration of nitrogen compounds so the Mexican Gulf suffers from excessive algae blooms and even red tide from time to time. This leads to more cloud formation and more rain in the United States east of the 98th meridian. This also occurs in Northern Europe, especially in the North Sea; the rivers flowing into the North Sea are rich in nutrients. The Baltic Sea was near oxygen death, but after the Baltic countries and Poland joined the EU, their rivers got partially cleaned up. In the far East the Yellow Sea and the South China sea are suffering major pollution. All these regions produce more clouds, and through prevailing winds some end up in the Arctic, where they snow out, except in the Summer when they rain out except on Greenland where it snows 12 months of the year. This leads to increasing winter temperatures of about 5.5 C above the 80th latitude, 2.5 C in spring and fall and a decrease of about 0.5 C in the summer (it takes a long time to melt that extra snow). This affects about 4% of the earth’s surface, so the total temperature increase from over-fertilizing the rivers is 0.04 * 2.5 = 0.1 C. No such effect occurs in the Antarctic. To illustrate the current yearly temperature trend in the Arctic, see this current polar temperature chart:

Even more illustrative is the development of ice on Greenland. In 2012 it looked like all of Greenland was going to melt in less than 1000 years, and the polar ice cap would be gone altogether in late summer of 2020. The ice over Greenlnd is now growing ever so slightly again:

b. The effect of various air pollution.

The major effect from air pollution is that it generates aerosols that act as condensation points for cloud formation if the air is oversaturated with moisture. In the last 40 years the air has gotten cleaner in the industrial west, not so much in China, India and Africa. The net result was a 2 % drop in cloud cover and the resulting temperature rise is already accounted for. There are no good worldwide analyses of ancient cloud cover, but air pollution was rising rapidly until the clean air act, enacted in 1963 was beginning to show results in the 70’s. However, ancient method of heating with coal, wood, peat and dried cowdung was far more polluting and harmful to your lungs. If U.S is eliminating all remaining coal plants the CO2 will still be rising since China is planning to build another 1070 coalburning power plants, ane their coal is inferior to ours and their pollution control is far less strict than ours resulting in more aerosols over China and some of the soot to be transmitted all the way to the Arctic, resulting in a black layer of soot on old snow and old ice.

This is the official IPCC AR5 assessment of forcing factors, and we can see that CO2 is over-estimated by a factor of 2.5 and Methane by a factor of 10. When this is taken into account the net forcing from all other factors is neutral within the margin of uncertainty.

c. The effect of greening of most of the earth.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, done with only the fertilizer of CO2, the earth can now keep another 2 billion people from starvation, not to mention what good it does for plants and wildlife.

The greening of the earth should cause temperature to increase, but if there is enough moisture in the earth the evapotranspiration from the leaves have a cooling effect and more than offsets the lower albedo from green leaves versus dry earth. In addition, with rising CO2 levels the leaves need less water to perform the photosynthesis, so the net result from lowering the albedo by 0.05 % over 17% of the world leads to a cooling down. The average albedo of the earth is 30%, and 17% of the earth lowers the albedo by 5% this lowers the total albedo of the earth by 0.25%.

The total reflection of sunlight from the earth is 22.9 W/m2, so 0.25% of that is 0.057 W/m2, which translates to a net temperature increase of 287 * fourth root of (1- (0.057/ 340)) = 287.33 K, or 0.012 degree Celsius.

d. The areas that are becoming more like a desert.

Most of the earth displays an increase of leaf area, but there are areas in red that are becoming less green. The areas are: The American Southwest, The Pampas area of South America, a 100 mile band in Southern Sahara, part of East Africa, Madagascar, South East Africa, Western Australia, Part of the Volga region, Kazakhstan east of Lake Aral and various parts of China, and the Mekong river. These areas have this in common, the aquifers ate being depleted, the rivers are diminishing and some of them no longer reach the ocean, lakes are almost disappearing, but people still move to those areas “for the good climate”.

The areas so affected are about 900,000 sq miles of the American Southwest and about 3 million square miles total to suffer from becoming more like a desert. The common theme of all these areas is depletion of the aquifers, rivers diminishing, lakes drying up and soil erosion.

The only part of the world US can control directly is The American Southwest. It can expect more frequent and longer droughts, since there is no amplification of clouds from the relatively cool and clean Pacific ocean, and the long term temperature trend is cooling. The Colorado River no longer feeds the Gulf of California with nourishment. The Colorado river used to all the water allocation for all the participating states, but around 2000 the water use had caught up with supply, and since then it has become much worse with demand far outstripping supply.

In addition the Great Salt Lake is now less than a third of the size it was in the 1970’s. A second level water shortage has been issued and for example Arizona will get a million Acre-feet lass per year from the river. The aquifers will be further depleted leading to less rainfall and the few remaining springs will dry out. If nothing is done, the American southwest will become desertified.

Ironically, deserts have a higher albedo than green soil, so letting the American Southwest become a desert would have a cooling effect by the increasing albedo, but the effect from the disappearing clouds would have a far greater heating effect, so letting the American Southwest become a desert is not a solution to the problem.

However, the area subject to desertification is about 0.6% of the world’s land area and rising the albedo by 0.05 leads to a cooling down. The average albedo of the earth is 30%, and before desertification the albedo was 25%, this rises the albedo of the earth by 0.03%. The total reflection of sunlight from the earth is 22.9 W/m2, so 0.03% of that is 0.007 W/m2, which translates to a net temperature decreasee of 287 * fourth root of (1- (0.007/ 340)) = 286.9995 K, or a cool down of 0.0005 degree Celsius.

Summary of all causes for climate change:

Direct effect from rising CO2: 0.17C

Secondary effect from increasing water vapor from rising CO2: 0.05C

Effect from rising Methane: less than 0.01C

Effect from N20 and Ozone: less than 0.01C

Temperature rise from decreasing cloud cover 0.67C

Secondary effect from increasing water vapor from temperature rise from decreasing clouds: 0.17C

Temperature increase from greening of the earth 0.12C

Temperature decrease from areas of desertification 0.0005C

TOTAL TEMPERATURE RISE: 1.2C and that is about where we are today.

What congress is doing to solve the problem.

Congress has passed the anti-inflation bill that included over 300 billion to fight climate change, and it included more solar panels and wind turbine motors to be imported from China. The experience from Europe is that electricity from solar panels and windmills is 5.7 times as expensive as conventional power generation.

This analysis was done for 2019, before COVID. The situation is much worse now, with electricity rares up to 80 c/kWh, topping $1 /kWh this winter in some countries.

Even at the current increased European Gas prices, the estimated excess expenditures on Weather-Dependent “Renewables” in Europe is still very large:  $~0.5 trillion in capital expenditures and $~1.2 trillion excess expenditures in the long-term.

These simple calculations show that any claim that Wind and Solar power are now cost competitive with conventional fossil fuel (Gas-fired) generation are patently false.  The figures give an outline of the financial achievements of Green activists in stopping  fracking for gas in Europe, close on to $1.2 trillion of excess costs.

It would be better not to import any solar panels and wind power generators from China and let them pay for the extra cost rather than building more coal burning plants. After all they were planning to build over a thousand new plants between now and 2030, all legal under the Paris accord. This would benefit the world climate much more, since Chinese coal plants are far more polluting, since China has far less stringent environmental regulations than U.S.

U.S. uses 13.5% of the world’s coal, and eliminating U.S. CO2 emissions would in time reduce the world temperature by 0.023C, providing no other country, such as China and India would increase their use of Coal, which they are, to the total of 1300 new coal plants between now and 2030. This would raise global temperature by more than 0.06 C.

What congress should do instead.

a. What congress should do immediately.

  1. Immediately stop downblending U 233 and pass The Thorium Energy security act SB 4242a. See more here.

2. Remove Thorium from the list of nuclear source material. The half-life of Thorium232 is 14 billion years, so its radioactivity is barely above background noise. More importantly, while Thorium is fertile, it is not fissile and should therefore not be included in the list. This would make it far easier to mine rare earth metals, as long as the ore consists of less than 0.05% Uranium, but any amount of Thorium is allowed without classifying the ore “Source material”.

3. Separate nuclear power into 3 categories. a. conventional nuclear power. b. Thorium breeder reactors that make more U233 than it consumes, and c. Thorium reactors that reduce nuclear waste.

4. Stop buying solar panels from China. Stop buying wind turbine generators from China. Let them install those in China and pay 5 times as much for their electricity.

5. Immediately form a commission led by competent people, not politicians; to decide how to best expand the electric grid and to best harden it against electro-magnetic pulses, whether solar or nuclear and to safeguard it against sabotage.

6. Remove all subsidies on electric cars, solar panels and wind generators, but continue to encourage energy conservation.

7. Encourage research and development of Thorium fueled reactors, especially liquid salt reactors by drastically simplifying and speeding up the approval process. President Trump issued an executive order in the last month of his presidency EO 13972 specifying that the United States must sustain its ability to meet the energy requirements for its national defense and space exploration initiatives. The ability to use small modular reactors will help maintain and advance United States dominance and strategic leadership across the space and terrestrial domains. This EO should be expanded to include civilian small modular reactors, including Liquid salt Thorium reactors less than 200 MW, which are the only valid reactors for space exploration.

b. Longer term developments, but extremely urgent.

Of the long term warming of the globe of 1.1 C since the beginning of industrialization only 0.17 C is attributable to rising CO2, NH4 and NO2 levels, of which United states is currently responsible for 13.5% and decreasing, or 0.023C. The disappearance of clouds is responsible for twice as much globally or 0.33 C of which probably 1/6 is occurring in the American Southwest, causing an increase in temperature of 0.055C. However, the temperature rise in say the Grand Canyon has been in excess of 2 C,, and in the urban areas it has been even more. These are my long term suggestions:

Build a TransContinental Aqueduct. A realistic way to save Lake Mead and reverse the desertification of the American SouthWest.Build a TransContinental Aqueduct. A realistic way to save Lake Mead and reverse the desertification of the American SouthWest.

The problem:

Lake Mead will be emptied in less than 10 years with the current usage pattern. Then what?

The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.

The aquifers in Arizona, especially in the Phoenix and Tucson area, and to some extent New Mexico and the dry part of Texas are being drawn down and are at risk of being exhausted.

The Salton Sea in the Imperial Valley of California is maybe the most polluted lake in all of U.S.A. It is even dangerous to breathe the air around it sometimes. The area contains maybe the largest Lithium deposit in the world.

The Colorado River water is too salty for good irrigation .

The Colorado river no longer reaches the Gulf of California. Fishing and shrimp harvesting around the Colorado River Delta is no more.in less than 10 years with the current usage pattern. Then what?

The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.

40 million people depend on the Colorado River for drinking water. The population is still rising rapidly in the West. Will they have water in the future.

Except for California there is not much pumped Hydro-power storage in the American Southwest.

Texas has plenty of wind power, but no pumped hydro-power storage. This makes it difficult to provide peak power when the sun doesn’t shine and the wind doesn’t blow. Nuclear power is of no help, it provides base power only. Peak power has to come from coal and natural gas plants.

New Mexico has some ideal spots for solar panels, but no water is available for pumped storage.

Arizona has a surging population, wind and solar power locations are abundant, but no pumped hydro-power storage.

Arkansas and Oklahoma have a good barge traffic system. This proposal will increase flood control and improve barge traffic by increasing the maximum barge draft from 9 feet to 12 feet and during dry periods reverse the flow of the Arkansas River. The Arkansas river yearly water flow is nearly double that of the Colorado River.

The solution:

Build a transcontinental aqueduct from the Mississippi River to the Colorado River capable of transporting 12 million acre-ft of water yearly through Arkansas, Oklahoma, Texas, New Mexico and Arizona. It will be built similar to the Central Arizona Project aqueduct, supplying water from the Colorado river to the Phoenix and Tucson area, but this aqueduct will be carrying four times more water over four times the distance and raise the water nearly twice as high before returning to near sea level. The original Central Arizona Project cost $4.7 billion in 1980’s money, the Transcontinental Aqueduct will in Phase 1 cost around $200 Billion in 2022 money applying simple scaling up principles.

The Mississippi River has a bad reputation for having polluted water, but since the clean water act the water quality has improved drastically. Fecal coli-form bacteria is down by a factor of more than 100, the water is now used all the way down to New Orleans for drinking water after treatment. The lead levels are down by a factor of 1000 or more since 1979. Plastic pollution and pharmaceutical pollution is still a problem, as is the case with most rivers. The Ph is back to around 8 and salt content is negligible. Mississippi water is good for irrigation, and usable for drinking water after treatment. The Arkansas River is used as a drinking water source.

But the aqueduct will do more than provide sweet Mississippi water to the thirsty South-west, it will make possible to provide peak power to Texas, New Mexico and Arizona. In fact, it is so big it will nearly triple the pumped Hydro-power storage for the nation, from 23 GW for 5 hours a day to up to 66 GW when fully built out.

The extra pumped hydro-power storage will come from a number of dams built as part of the aqueduct or adjacent to it. The water will be pumped from surplus wind and solar power generators when available. This will provide up to 50 GW of power for 5 hours a day. If not enough extra power has been generated during the 19 pumping hours, sometimes power will be purchased from the regular grid. The other source of pumped hydro-power storage is virtual. There will be up to 23 GW of LFTR (Liquid Fluoride salt Thorium Rector) power stations strategically stationed along the waterway providing pumping of water for 19 hours and providing virtual hydro-power output for the remaining 5, when the aqueduct is fully built.

These 43 GW of hydro-power capacity will be as follows: Oklahoma, 0.2 GW; Texas, 18,5 GW (right now, Texas has no hydro-power storage, but plenty of wind power); New Mexico, 10.5 GW; Arizona 13.6 GW. In Addition, when the Transcontinental Aqueduct is fully built out, the Hoover dam can provide a true 2.2 GW hydro-power storage by pumping water back from Lake Mojave; a 3 billion dollar existing proposal is waiting to be realized once Lake Mead is saved.

The amount of installed hydroelectric power storage is:

U.S. operating hydroelectric pumped storage capacity

Most hydroelectric pumped storage was installed in the 70’s. Now natural gas plants provide most of the peak power. This aqueduct will more than double, triple the U.S. pumped peak storage if virtual peak storage is included. By being pumped from surplus wind and solar energy as well as nuclear energy it is true “Green power”. Some people like that.

What follows is a description of each leg of the aqueduct. Each leg except legs 9 and 10 ends in a dam, which holds enough water to make each leg free to operate to best use of available electricity and provide peak power on demand.

Leg 1 of the Trans-Continental aqueduct. From the Mississippi river to the Robert S. Kerr Lock and dam on the Arkansas River. Total length 15miles of aqueduct and 305 miles of river. Cost of water 300 kWh per acre-ft.

Leg 2 of the Transcontinental Aqueduct: From the Robert S. Kerr Lock and dam to the Eufaula Dam on the Canadian River. Total length 42 miles of lake and river. Cost of water 585 kWh per acre-ft.

Leg 3 of the Transcontinental aqueduct. From the Eufaula Dam to Ray Roberts Lake. Total length 42 miles of lake and 125 miles of aqueduct. Cost of water 900 kWh per acre-ft.

Leg 4 of the Transcontinental Aqueduct. From Lake Ray Roberts to the Brad Dam (to be built). Total length 205 miles of aqueduct. Cost of water 1735 kWh per acre-ft.

Leg 5 of the Transcontinental aqueduct. From Brad dam to Deadman Draw dam and pumped storage power plant. Total length 5 miles of lake and 60 miles of aqueduct. Cost of water 2425 kWh per acre-ft. In Phase 2 can provide up to 4 GW of pumped storage power.

Leg 6 of the Transcontinental aqueduct. From Deadman Draw dam and pumped storage power plant to Buffalo Soldier Draw dam and optional pumped storage plant.Total length 205 miles of aqueduct. Cost of water 3711 kWh per acre-ft.In Phase 2 can provide up to 4.8 GW of pumped storage power.

Leg 7, leg 8 and leg 9 of the Transcontinental aqueduct. From the Buffalo Soldier Draw dam to the highest point of the aqueduct 10 miles into Arizona. Leg 7 is 255 miles. Cost of water 6132 kWh per acre-ft. Leg 8 is 125 miles. Cost of water is 5705 kWh per acre-ft. Leg 9 is 160 miles. Cost of water is 6605 kWh per acre-ft.

The Transcontinental Aqueduct. Leg 10: The highest pumping station in Arizona to San Carlos Lake, a distance of 93 miles. Cost of water 5205 kWh per acre-ft.

The Transcontinental Aqueduct. Leg 11: From San Carlos Lake to East Diversion dam, a distance of about 60 miles. Cost of water 4905 kWh per acre-ft.

The Transcontinental aqueduct Leg 12: From the East Diversion dam to connecting to the Central Arizona aqueduct 45 miles WNW of Phoenix. Phase 1 is 20 miles of aqueduct and 85 miles of River. Cost of water is 5105 kWh per acre-ft. Phase 2 adds 130 miles of aqueduct . The cost of water is 5065 kWh per acre-ft.

The Transcontinental aqueduct, Leg 13: From the New Arlington dam to the Colorado River. Leg 13, phase 1 is 130 miles of river.Cost of water is 5105 kWh per acre-ft. Phase 2 adds 15 miles of aqueduct . The cost of water is 5130 kWh per acre-ft.

The Transcontinental Aqueduct, spur 14: The Wilson Canyon Solar farm and pumped storage plant. Can supply 13.5 GW of pumped storage power.

The Transcontinental Aqueduct, spur 15: The Poppy Canyon Solar farm and pumped storage plant. Can provide up to 28 GW of pumped storage power.

The Transcontinental Aqueduct will serve the Lower Colorado River Basin, Southern New Mexico and Western Texas. It will pump up to 12 million acre-ft of water annually from the Arkansas river and Mississippi river all the way to southern Colorado River.

The total electricity needed to accomplish this giant endeavor is about 60 billion kWh annually. or about one and a half percent of the current US electricity demand. In 2020 the US produced 1,586 billion kWh from natural gas, 956 from coal, 337.5 from wind and 90.9 from solar.

For this giant project to have any chance of success there has to be something in it to be gained from every state that will be participating. Here are some of the benefits:

Arizona: Arizona needs more water. The water from Mississippi is less saline and better suited for agriculture and the people growth makes it necessary to provide more water sources. Right now the aquifers are being depleted. Then what? One example: The San Carlos lake is nearly dry half the time and almost never filled to capacity. With the aqueduct supplying water it can be filled to 80 +- 20% of full capacity all the time. In the event of a very large snow melt the lake level can be reduced in advance to accommodate the extra flow. Likewise during Monsoon season the aqueduct flow can be reduced in anticipation of large rain events. Arizona together with New Mexico has the best locations for solar power, but is lacking the water necessary for hydro-power storage. This proposal will give 600 cfs of water to Tucson, 3,100 cfs to the Phoenix area and 3,900 cfs to the lower Colorado River in Phase 1. I phase 2 it will add 3,100 cfs to Lake Havasu and an extra 4,700 cfs to the lower Colorado River. It will also also add 28 GW of hydro-power storage capable of adding 140 GWh of electric peak power daily when it is fully built out in Phase 3.

Arkansas: The main benefit for Arkansas is better flood control and river control of the Arkansas River and allowing it to deepen the draft for canal barges from 9,5 feet to 12 feet, which is standard on the Mississippi river.

California: The water aqueduct serving Los Angeles will be allowed to use maximum capacity at all times. Additional water resources will be given the greater San Diego area. The Imperial valley will be given sweet Mississippi and Arkansas River water, which will improve agriculture yield. The polluted New River will be cut off at the Mexico border. There will be water allocated to the Salton Sea. There is a proposal to mine the world’s largest Lithium ore, mining the deep brine, rich in Lithium. (about a third of the world supply according to one estimate). This requires water, and as a minimum requirement to allow mining in the Salton Sea the water needs to be cleaned. This requires further investigation, but the area around the Salton Sea is maybe the most unhealthy in the United States. It used to be a great vacation spot.

Mexico: During the negotiations about who was going to get the water in Lake Mead Mexico did not get enough water, so they have been using all remaining water for irrigation, and no water is reaching the ocean anymore. In addition the water is too salty for ideal irrigation. This proposal will provide sweet Mississippi and Arkansas River water to Mexico, ensure that some water reaches the Colorado river delta. This will restore the important ecology and restore aquatic life in the delta and the gulf. The town of Mexicali will get some water in exchange for shutting off New River completely.

Nevada: Las Vegas is a catastrophe waiting to happen unless Lake Mead is saved. With this proposal there will be ample opportunity to make the desert bloom.

New Mexico: The state is ideally suited for solar panels. In addition to give much needed water to communities along the length of the aqueduct, it will provide 13.5 GW of pumped storage power to be made available at peak power usage for up to 5 hours a day.

Oklahoma: The main advantage for Oklahoma is a much improved flood control. It will provide the same advantage for river barge traffic as benefits Arkansas.

Texas: The state has a big problem. It has already built up too much wind power and can not give up their coal burning power plants until the electricity is better balanced. They have no hydro-electric power storage at all, and we saw the result of that in a previous year’s cold snap. This proposal will give the Texas electric grid 8.8 GW of hydro-electric power for up to 5 hours a day.

Utah: The state will no longer be bound to provide water to Lake Mead, but can use all of its water rights for Utah, especially the Salt Lake City region, and to reverse the decline of the Great Salt Lake that is now shrunk to less than a third of the size it had in the 1970’s.

Wyoming: The state will be free to use the water in the Green River and all the yearly allocated 1.05 million acre-feet of water can be used by the state of Wyoming.

The cost to do all these aqueducts will be substantial, but it can be done for less than 350 billion dollars in 2022 money, and that includes the cost of providing power generation. Considering it involves 40 million people dependent on the Colorado River now and another 10 million east of the Rocky Mountains, it is well worth doing, much more important to do than other “green” projects, since it will save the American Southwest from becoming an uninhabitable desert.

This proposed solution cannot be made possible without changing our approach to power generation. The mantra now is to solve all our power needs through renewables. Texas has shown us that too much wind power without any hydroelectric power storage can lead to disaster. In addition, windmills kill birds, even threatening some species, such as the Golden Eagle and other large raptors that like to build their aeries on top of the generators. Solar panels work best in arid, sunny climate, such as Arizona and New Mexico, but the panels need cooling and cleaning to work best, and that takes water. They are even more dependent on hydro-power storage than wind. The transcontinental aqueduct will triple the hydro-electric power storage for the nation. Without pumped power storage we still need all the conventional power generation capacity for when the sun doesn’t shine and the wind doesn’t blow.

Conventional Nuclear power plants doesn’t work in most places since they depend on water for their cooling, and most of these aqueducts pump water in near deserts, and there would be too much evaporation losses to use water from the aqueducts for cooling.

The only realistic approach would be to use LFTR power plants. (Liquid Fluoride Thorium Reactors). There are many advantages for using LFTR. Here are 30 reasons why LFTRs is by far the best choice.

For this project to succeed there must be developed a better way to build SMRs (Small Modular Reactors, less than 250 MW) more effectively. The price to build a LFTR plant should be less than $2.50 per watt. While the LFTR science is well understood, the LFTR engineering is not fully developed yet, but will be ready in less than 5 years if we get to it. In the mean time there should be built one or more assembly plants that can mass produce LFTR reactor vessels small enough so they can be shipped on a normal flatbed trailer through the normal highway system. My contention is that a 100 MW reactor vessel can be built this way and the total cost per plant will be less than 250 Million dollars. To save the American Southwest we will need about 350 of them, or 87,5 billion dollars total. This cost is included in the total calculation. There will be many more of these plants produced to produce all the electric power to power all the electric vehicles that are going to be built. This is the way to reduce fossil fuel consumption. Just switching to electric vehicles will not do the trick. The electric energy must come from somewhere. To convert all cars and trucks and with unchanging driving habits will require another 600 GW of generating capacity by 2050, our present “net zero emissions” goal.

To do this project we need cooperation from all states in providing eminent domain access. The Federal government will need to approve LFTR as the preferred Nuclear process and streamline approval process from many years to less than one year.

Some of the power will come from solar panels and wind turbines, which will reduce the need for LFTR’s. One tantalizing idea is to cover the aqueduct with solar panels. This will do many things, it will not take up additional acreage, water needed to keep the panels clean is readily available, and can even be used to cool the solar panels if economically beneficial. The area available is 152 feet times 1100 miles = 1.6 billion square feet, and one square foot of solar panel produces around 1 W, which means covering the aqueduct with solar panels would produce 882 MW of power. It would also reduce evaporation. The second source of energy will be 165,000 5kW vertical wind turbines producing 825 MW when the wind is blowing. The rest of the power will cme from LFTRs. This idea requires further analysis. Here is one possible implementation of the idea:

This image has an empty alt attribute; its file name is aqueductcrossection.jpg

C. Further developments to save the American Southwest.

When the Transcontinental aqueduct is well under way it is time to start the Trans-Rocky-Mountain Aqueduct. in a few years the population growth will require again to save Lake Powell and Lake Mead, and rejuvenate the American South-west.

The problem:

  1. Lake Powell and Lake Mead will be emptied in less than 10 years with the current usage pattern. Then what?
  2. The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.
  3. the aquifers are drawn down everywhere in the Southwest, but also the Ogallala Aquifer in Colorado and Kansas, and are at risk of being exhausted.
  4. The Colorado River water is too salty for good irrigation .
  5. The Colorado river no longer reaches the Gulf of California. Fishing and shrimp harvesting around the Colorado River Delta is no more.
  6. 40 million people depend on the Colorado River for drinking water. The population is still rising rapidly in the West. Will they have water in the future? Think 20 million future population growth in the next 40 years, people want to move there even with the current water problems.

The solution:

Build a Trans-Rocky-Mountain aqueduct from the Mississippi River to the San Juan River. In the first 391 miles the aqueduct joins the McClellan–Kerr Arkansas River Navigation System by adding the capability of pumping 7,500 cfs of water through 16 dams that service the locks. This will lead to reversing the flow of water during low flow. This also facilitates the navigation channel to be deepened from 9 feet to 12 feet to service fully loaded barges, a step authorized but not funded by Congress. The Arkansas river will then be capable of transporting 8 million acre-ft of water yearly through Arkansas, Oklahoma, Kansas, Colorado and New Mexico, supplying water from the Colorado river to Lake Powell. All that is needed to do in this stage is provide the dams and locks with a number of pumps and pump/generators to accommodate this, at a cost of less than 2 billion dollars. The next phase is pumping up water in the Arkansas river for 185 miles. To accommodate this there will be 17 small control dams built that are closed when normal pumping occurs and open during flood conditions. The cost for this segment, including pumps will be less than 3 billion dollars. The third segment is a 465 mile aqueduct to cross the Rocky Mountains much like the Central Arizona project but this aqueduct will carry three times more water 1.27 times the distance and raise the water four times higher. The original Central Arizona Project cost $4.7 billion in 1980’s money, the aqueduct part of the Trans-Rocky-Mountain aqueduct will cost around $50 Billion in 2021 money applying simple scaling up principles.

Power requirements for the 3 stages are 310 MW for the canal stage, 600MW for the river stage and 6.2 GW for the aqueduct stage. The aqueduct stage can be controlled by the power companies to shut off the pumps and provide 6.4 GW of virtual peak power for up to 5 hours a day on average, and each leg can be controlled individually since they are separated by large dams. There will be 64 one hundred MegaWatt LFTR (Liquid Fluoride salt Thorium Rector) power stations strategically stationed along the waterway providing pumping of water for 19 hours and providing virtual hydro-power output for on average 5 hours. There will also be 910 MW of power needed that is controlled by the river authorities.

The building cost of providing LFTR power should be around $2.50 per Watt of installed energy if a plant is built to manufacture via an assembly line a standardized version of 100 MW LFTR reactor core vessels assemblies capable of being transported on truck to the installation point. The total power cost should then be 16 billion dollars to build, and 5 cents per kWh or about 2.5 billion dollars a year to provide power.

The Mississippi River has a bad reputation for having polluted water, but since the clean water act the water quality has improved drastically. Fecal coli-form bacteria is down by a factor of more than 100, the water is now used all the way down to New Orleans for drinking water after treatment. The lead levels are down by a factor of 1000 or more since 1979. Plastic pollution and pharmaceutical pollution is still a problem, as is the case with most rivers. The Ph is back to around 8 and salt content is negligible. Mississippi water is good for irrigation, and usable for drinking water after treatment. The Arkansas River water quality is pretty good, good enough in Kaw Lake to be used for municipal water supply. Nitrates and phosphates are lower than in most Eastern rivers, Ph is around 8 and coli-bacteria low.

Most hydroelectric pumped storage was installed in the 70’s. Now natural gas plants provide most of the peak power. This aqueduct will add 6.4 GW to the U.S. pumped peak storage if virtual peak storage is included. By being pumped from surplus wind and solar energy as well as nuclear energy it is true “Green power”. Some people like that.

What follows is a description of each leg of the aqueduct. Legs 3, 4, 5 and 6 ends in a dam, which holds enough water to make each leg free to operate to best use of available electricity and provide peak power on demand.

Leg 1 of The Trans-Rocky-Mountain aqueduct. From the Mississippi river to Webbers Falls lock and dam. Total length 15miles of aqueduct and 335 miles of river. Cost of water 333 kWh per acre-ft.

Leg 2 of The Trans-Rocky-Mountain aqueduct. From Webbers Falls to Keystone Dam, a distance of about 75 miles that is river and 25 miles, which is canal. Cost of water 593 kWh per acre-ft.

Leg 3 of the Trans-Rocky-Mountain aqueduct. From Keystone Dam to Kaw Dam.The Keystone Lake is 38 miles long and the river part is about 110 miles. Cost of water 901 kWh per acre-ft.

Leg 4 of the Trans-Rocky-Mountain aqueduct. From Kaw Lake to John Martin Reservoir, a distance of about 200 miles. Cost of water 4,446 kWh per acre-ft.

Leg 5 of the Trans-Rocky-Mountain aqueduct. From John Martin Reservoir to Trinidad Lake, a distance of about 120 miles. Cost of water 7,300 kWh per acre-ft.

Leg 6 of the Trans-Rocky-Mountain aqueduct. From Trinidad Lake to Abiquiu Reservoir, a distance of 90 miles. Cost of water 7,910 kWh per acre-ft.

Leg 7 of the Trans-Rocky-Mountain aqueduct. From the Abiquiu Reservoir to the San Juan River, a distance of 55 miles. Cost of water 7,395 kWh per acre-ft.

Once these two aquifers are completed and running successfully filling the rivers again it is time to refill the aquifers. This requires a change in the water rights laws. The rain water is a property of the land and can be locally retained via small catch basins and ditches. This will restore the aquifers, reduce soil erosion and rejuvenate vegetation as has been successfully done in the dry parts of India. They needed to capture the monsoon rains, and so does Arizona and New Mexico.

One more thing:

Build a South Platte River aqueduct. This will solve the water needs for the greater Denver ares and help preserve the northern Ogallala aquifer.

The rise in CO2 is on balance positive, it has already helped to keep 2 billion people from starvation. With food famine coming the very worst thing we can do is declare a climate emergency and unilaterally reduce our electric supply eliminating much of our fossil fuel source to produce electricity and at the same time push electric cars.

This cannot be solved unless there will be a deep commitment to Nuclear power, streamline government permit processes and let private industry find the best solutions without government playing favorites and slowing down the process. Regular U235 power is not sufficient for this, Only Thorium power will do, and there are many reasons for it. Here are 30 of them:

 1. A million year supply of Thorium available worldwide.

 2. Thorium already mined, ready to be extracted.

 3. Thorium based nuclear power produces 0.012 percent as much TRansUranium waste products as traditional nuclear power.

 4. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.

 5. Thorium nuclear power is only realistic solution to power space colonies.

 6. Radioactive waste from an Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick.

 7. Thorium based nuclear power is not suited for making nuclear bombs.

 8. Produces isotopes that helps treat and maybe cure certain cancers.

 9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.

10. Molten Salt Liquid Fluoride Thorium Reactors cannot have a meltdown, the fuel is already molten, and it is a continuous process. No need for refueling shutdowns.

11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

12. Atmospheric pressure operating conditions, no risk for explosions. Much safer and simpler design.

13. Virtually no spent fuel problem, very little on site storage or transport.

14. Liquid Fluoride Thorium Nuclear reactors scale beautifully from small portable generators to full size power plants.

15. No need for evacuation zones, Liquid Fuel Thorium Reactors can be placed near urban areas.

16. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

17. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

18. Russia has an active Thorium program.

19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

 20. China is having a massive Thorium program.

21. United States used to be the leader in Thorium usage. What happened?

22. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

23. With a Molten Salt Reactor, accidents like Chernobyl are impossible.

24. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

25. Will produce electrical energy at about 4 cents per kWh.

26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles.

27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed.

28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

29. President Donald J. Trump on Jan. 5 2021 issued an Executive Order on Promoting Small Modular Reactors for National Defense and Space Exploration. Only Liquid fluoride thorium reactors can meet all the needs.

30. We have to switch from Uranium to Thorium as nuclear feed-stock. We are running out of domestic Uranium.

My favorite Thorium power plant would be a 100 MW Liquid Fluoride Thorium Reactor (LFTR). It is also called a Small Modular Reactor (SMR). It is small enough that all core elements will fit in three standard truck containers and be made on an assembly line. It can be constructed many ways, one is a normal fast breeder reactor, another is adapted to burn nuclear waste. The cost for these reactors, when built on an assembly line will be less than $2 per Watt. They can be placed anywhere, since they are inherently safe, no need for an evacuation zone. Since they are operating at 500C temperature with either gas or liquid lead as heat transfer media there is no need for water as a cooling medium. When mass produced it will be able to produce electricity at 5 c per kWh and the mining to produce the materials is a fraction of what is needed for solar, and wind power, especially when taking into account the intermittent nature of these power sources.The only thing better would be fusion power, but that is at least 20 years away as a power producing source, but it is coming. These are exciting times!

The American Southwest can still be saved.

The inflationary aspects of the “Inflation Reduction Act”. The “Green New deal” is wrong. There is a better way to do clean energy.

Below is the experience from the European union of retail cost of electricity in all member nations from the year 2019, the last year to make any meaningful analysis, Covid and the Ukraine war has made worthless any newer analysis.

This slide tells it best. The real cost for Solar and Wind electricity is 5.7 times that of the average of coal, gas, nuclear and hydro-electric power. The real reason is that you still need all the generating power for when the wind doesn’t blow enough or too much, and the sun doesn’t shine, which is most of the time. In addition, solar panels and windmills require mining of rare earth metals, and are as such highly mining intensive. Then there is the cost of disposal, which has already begun for first generation wind mills and solar panels.

The solution is simple: Do not buy any more solar panels from China! Let them use them themselves, they may then only have to build a thousand new dirty lignite coal fired power plants instead of 1171 between now and 2030

The other inflationary thing is the rising cost of Lithium and rare earth metals. In 2020 the price of LiCO2 was around 40,000 yuan/ton (yes, Lithium and rare earth metals are traded in Chinese currency). The price since then has more than twelve-folded and is now close to half a million yuan/ton.

China produces three-quarters of all lithium-ion batteries and is home to 70% of production capacity for cathodes and 85% for anodes (both are key components of batteries).

Over half of lithium, cobalt and graphite processing and refining capacity is also located in China. The U.S has a high quality rare earth metal mine in Mountain Pass, CA.,

but the refining is done in China. In June 2022 Amarillo, Texas had a groundbreaking ceremony for a rare earth metals refinery, so refining capacity will finally return to the U.S. See more here. Below is a chart of the worldwide mining of rare earth metals. Notice the prominent role Myanmar plays in rare earth metals. China is positioning itself to dominate Myanmar for their metals and to build an oil import pipeline to avoid the Malacca strait choke point.

In 2016, Hunter Biden’s Bohai Harvest RST invested in China’s Contemporary Amperex Technology Co. (CATL), the world’s largest lithium ion battery producer.

Remember this every time you hear Joe Biden talk about Green new deal and electric vehicles.

So, my suggestion is simple: Do not buy any solar panels from China, let them install them in China at 4.7 times the price of coal power. this is a much cleaner global investment. China was planning to build 1171 new coal plants polluting more than our clean coal could ever do. Likewise do not buy any more wind mill generators from China, let them install them in China. Wait to promote electric vehicles until the grid is built up to handle the additional demand for electricity.

This would save about 430 billion dollars from the inflation reduction act. What can we do instead and achieve an even better outcome? Check this video.

What shall be done? Congress must immediately pass SB4242. Ten years ago I made the same observation, see here. At that time there was 1400 kg U-233 remaining at Oak Ridge. A ton has been downblended since then. It is late, but not too late to save the rest. Here is a very illuminating video:

I agree totally with this video. Molten salt Thorium reactors can produce electricity for less than 5 cents per kilowatt-hour, comparable to coal and five times less than wind and solar when mass produced as SMR’s (small Modular Reactors. ) A 100 MW reactor can be built on an assembly line, and the vital parts can be shipped in 3 standard containers over road. They require much less mining to produce than the corresponding windmills and solar panels, and Thorium is already mined as a byproduct of mining rare earth metals. The only cost is therefore the cost of extracting the Thorium.

How is China dealing with Thorium nuclear power? They recently approved starting up their own molten Salt reactor, (source here.

In January 2011, CAS launched a CNY3 billion (USD444 million) R&D programme on liquid fluoride thorium reactors (LFTRs), known there as the thorium-breeding molten-salt reactor (Th-MSR or TMSR), and claimed to have the world’s largest national effort on it, hoping to obtain full intellectual property rights on the technology. This is also known as the fluoride salt-cooled high-temperature reactor (FHR). The TMSR Centre at SINAP at Jiading, Shanghai, is responsible.

Construction of the 2 MWt TMSR-LF1 reactor began in September 2018 and was reportedly completed in August 2021. The prototype was scheduled to be completed in 2024, but work was accelerated.

“According to the relevant provisions of the Nuclear Safety Law of the People’s Republic of China and the Regulations of the People’s Republic of China on the Safety Supervision and Administration of Civilian Nuclear Facilities, our bureau has conducted a technical review of the application documents you submitted, and believes that your 2 MWt liquid fuel thorium-based molten salt experimental reactor commissioning plan (Version V1.3) is acceptable and is hereby approved,” the Ministry of Ecology and Environment told SINAP on 2 August.

It added: “During the commissioning process of your 2 MWt liquid fuel thorium-based molten salt experimental reactor, you should strictly implement this plan to ensure the effectiveness of the implementation of the plan and ensure the safety and quality of debugging. If any major abnormality occurs during the commissioning process, it should be reported to our bureau and the Northwest Nuclear and Radiation Safety Supervision Station in time.”

The TMSR-LF1 will use fuel enriched to under 20% U-235, have a thorium inventory of about 50 kg and conversion ratio of about 0.1. A fertile blanket of lithium-beryllium fluoride (FLiBe) with 99.95% Li-7 will be used, and fuel as UF4.

The project is expected to start on a batch basis with some online refueling and removal of gaseous fission products, but discharging all fuel salt after 5-8 years for reprocessing and separation of fission products and minor actinides for storage. It will proceed to a continuous process of recycling salt, uranium and thorium, with online separation of fission products and minor actinides. The reactor will work up from about 20% thorium fission to about 80%.

If the TMSR-LF1 proves successful, China plans to build a reactor with a capacity of 373 MWt by 2030.

As this type of reactor does not require water for cooling, it will be able to operate in desert regions. The Chinese government has plans to build more across the sparsely populated deserts and plains of western China, complementing wind and solar plants and reducing China’s reliance on coal-fired power stations. The reactor may also be built outside China in Belt and Road Initiative nations.

The liquid fuel design is descended from the 1960s Molten-Salt Reactor Experiment at Oak Ridge National Laboratory in the USA.

Researched and written by World Nuclear News.

As of yet China does not have any U233, so they have to use U235 as a start fuel. This will produce PU239 as well as U233, so the separation step is far more complicated. The U.S. still have 450 kg of U233, so the separation step can be made clean, and we can make a clean, breeding reactor with 0,01 % of the nuclear waste if conventional reactors.

The conversion of Thorium 232 to Uranium 233, leading to fission looks like this:

To remain pure, the protactinium mist be separated from the neutron bombarding environment as soon after it is generated as possible to avoid it to be transfered to U 234, which is non fissible, but radioactive. The breeding coefficient is 1.03, which means that 3% more U233 is generated than consumed. The half-life of the Protactinium is 27 days, so it will take up to 900 days for the U233 to double, which is two and a half years.

There is no time to spare. Pass SB4242 immediately, build a clean Molten salt Thorium reactor as soon as possible, remove Thorium as a source material and streamline the permit process so permits can be issued in weeks instead of years.

The thorium energy is the future clean energy until fusion is perfected, not solar panels or windmills, which do far more damage to the environment than Thorium nuclear plants!

The biggest cause of climate change is not rising CO2 levels but land use change, such as the desertification of the American Southwest.

Fear spreads up on Capitol Hill

The Climate change will break their will.

AOC: In Twelve years

our world disappears!

She acts as a Green New Deal shill.

Quote from Alexandria Occasio-Cortez in January 2019: “Millennials and Gen Z and all these folks that come after us are looking up, and we’re like, ‘The world is going to end in 12 years if we don’t address climate change, and your biggest issue is how are we gonna pay for it?’ ” she said. Congress has now finally put together a bill that will address climate change and add new taxes, so that it can be called the “Inflation Reduction Act”. While it will increase long term inflation, reduce growth, increase taxes and regulations, it’s attempt to solve climate change is particularly misplaced and will do more harm than good and ignore the real causes of climate change.

Let me explain.

We live in only one world. As a concerned citizen I realize we have immense environmental challenges before us, with water pollution; from plastics in the ocean, excess fertilizer in the rivers, poison from all kinds of chemicals, including antibiotics, birth control and other medicines flushed down the toilet after going through our bodies, animals fed antibiotics, pest control, weed control and so on. Increasing CO2 is not one of the problems, it will in fact help with erosion control, and allow us to feed more people on less agricultural land with proper management, and require less fertilizer and water to do so. In fact, proper water management is a larger problem, with some rivers no longer even reaching the ocean. All water is already spoken for, especially in the 10 to 40 degrees latitude, where most people live.

Allow me to be somewhat technical and give the background to why I know we will never experience the thermal runaway they are so afraid of.

Many years ago I worked at Hewlett Packard on an Atomic Absorption Detector. It was a huge technical success but a commercial failure, as it was too expensive to use for routine applications. However it found a niche and became the detector of choice when dismantling the huge nerve gas stockpiles remaining from the cold war. I was charged with doing the spectrum analysis and produce the final data from the elements. One day two salesmen came and tried to sell us  a patented device that could identify up to 21 different elements with one analysis. They had a detector that divided the visual band into 21 parts, and bingo, with proper, not yet “fully developed” software you could now analyze up to 21 elements with one gas chromatography analysis. What could be better? We could only analyze correctly four or five elements simultaneously. It turns out the elements are absorbing in the same wavelength bands, scientifically speaking they are not orthogonal, so software massaging can only go so far. It turned out that the promised new detector was inferior to what we already had and could only quantify three or 4 elements at the most. If elements are absorbing in the same frequency band they are called non-orthogonal, if they only absorb in unique bands they are orthogonal.

In the atmosphere the two most important greenhouse gases are water vapor and CO2 with methane a distant third. Water vapor is much more of a greenhouse gas everywhere except near the tropopause high above the high clouds and near the poles when the temperature is below 0 F, way below freezing. A chart shows the relationship between CO2 and water vapor:

Image result for h20 and co2 as greenhouse gases

Source: http://notrickszone.com/2017/07/31/new-paper-co2-has-negligible-influence-on-earths-temperature/

Of particular interest are the round dots representing the South Pole. We have really good global data for over 60 years. The Amundsen Scott – South Pole weather station, the average temperature of Winter season 2021 (April 2021 – September 2021) reached only -61,0°C / -78°F, and at this temperature CO2 is the dominant greenhouse gas by more than a factor of ten more important than water vapor. We have reliable measurements for the temperature change at the South Pole since 1957. During this time CO2 gas increased 31% to 413ppm, Methane increased 16% to 1.85 ppm and Nitrous oxide decreased, but this is a gas mostly confined to urban areas, and is now below 0.05 ppm worldwide. With CO2 increasing by 31% and water vapor negligible one would expect a temperature rise over 64 years of 0.65 C, or one degree Celsius warmer per century according to extrapolated lab measurements. This is the observed trend:

With 2021 value included the temperature trend is two degrees Celsius cooler per century!

At the South Pole snowfall is negligible in the winter, and for the whole year it is only 1.3 inches. No model would have predicted the cooling trend, so there must be other factors that are are more important, since real measurements beat models every time.

Even in Barrow, Alaska water vapor is the dominant greenhouse gas. Only at the South Pole (And North Pole) does CO2 dominate (but only in the winter).

All Climate models take this into account, and that is why they all predict that the major temperature increase will occur in the polar regions with melting icecaps and other dire consequences. But they also predict a uniform temperature rise from the increased forcing from CO2 and the additional water vapor resulting from the increased temperature.

This is wrong on two accounts. First, CO2 and H2O gas are nor orthogonal, that means they both absorb in the same frequency bands. There are three bands where CO2 absorbs more than H2O in the far infrared band, but other than that H2O is the main absorber. If H2O is 80 times as common as CO2 as it is around the equator, water vapor is still the dominant absorber, and the amount of CO2 is irrelevant.

Secondly gases cannot absorb more than 100% of the energy available in any given energy wavelength! So if H2O did absorb 80% of the energy and CO2 absorbed 50%, the sum is not 130%, only 90%. (0.8 + 0.5×0,2 or 0.5 + 0.8×0.5). In this example CO2 only adds one quarter of what the models predict.

How do I know this is true? Lucky for us we can measure what increasing CO2 in the atmosphere has already accomplished. For a model to have credibility it must be tested with measurements, and pass the test. There is important evidence suggesting the basic story is wrong. All greenhouse gases work by affecting the lapse rate in the tropics. They thus create a “hot spot” in the tropical troposphere. The theorized “hot spot” is shown in the early IPCC publications. (Fig A)

Fig. B shows observations. The hotspot is not there. If the hotspot is not there, the models must be wrong. So what is wrong with the models? This was reported in 2008 and the models still assume the additive nature of greenhouse gases, even to the point when more than 100% of the energy in a given band is absorbed.

How about Methane? Do not worry, it absorbs nearly exclusively in the same bands as water vapor and has no measurable influence on the climate.

But it will get warmer at the poles. That will cause melting of the ice-caps? Not so fast. When temperature rises the atmosphere can hold more water vapor, so it will snow more at higher latitudes. While winter temperatures will be higher with more snowfall, this will lower the summer temperatures until the extra snow has melted. And that is what is happening in the Arctics

As we can see from this picture, the winters were about 5 degrees warmer, but starting from mid April through early August temperatures were lower. It takes time to melt all the extra snow that fell because of the less cold air, able to contain more water vapor.

These are my suggestions

  1. Do not worry about increasing CO2 levels. The major temperature stabilizer is clouds, and they will keep the earth from overheating by reflecting back into space a large amount of incoming solar radiation. Always did, and always will, even when the CO2 concentration was more than 10,000 ppm millions of years ago. Ice ages will still come, and this is the next major climate change, maybe 3,000 years from now, probably less. Do not buy any more solar panels from China! China is by far the world’s largest polluter of real air pollution. They are planning to build
  2. Clean up rivers, lakes and oceans from pollution. This is a priority.
  3. Limit Wind turbine electric energy to areas not populated by large birds to save the birds. Already over 1.3 million birds a year are killed by wind turbines, including the bald and Golden Eagles that like to build their aeries on top of wind turbines. Above all, do not import any more wind turbine motors from China. They have severed all climate change cooperation with the U.S. Let them build a few less very polluting coal fired electric plants between now and 2030. China was planning to build 1171 additional coal plants.
  4. Do not build large solar concentration farms. They too kill birds.
  5. Solar panels are o.k. not in large farms, but distributed on roofs to provide small scale backup power.
  6. Exploit geothermal energy only in geologically stable areas.
  7. Where ever possible add peak power generation and storage capacity to existing hydroelectric power plants by pumping back water into the dams during excess capacity.
  8. Add peak power storage dams, even in wildlife preserves. The birds and animals don’t mind.
  9. Develop Thorium based Nuclear Power. Russia, China, Australia and India are ahead of us in this. Streamline permit processes. Prioritize research. This should be our number one priority, for when the next ice age starts we will need all the CO2 in the air to sustain life..
  10. Put fusion power as important for the future but do not rush it, let the research and development be scientifically determined. However, hybrid Fusion -Thorium power generation should be developed.
  11. When Thorium power is built up and has replaced coal and gas fired power plants, then is the time to promote electric cars, not before.
  12. Standard Nuclear Power plants should be replaced by Thorium powered nuclear plants, since they have only 0,01% of the really bad long term nuclear waste. For the time being do not decommission any nuclear plants before their time of obsolescence
  13. Start thinking about recovering CO2 directly from the air and produce aviation fuel. This should be done when Thorium power has replaced coal and gas fired power plants.
  14. But most important, reverse the real climate change, the desertification of the American Southwest. This can only be done by adding Thorium small modular reactors to the electric energy mix. Wind and solar will not do it, since they only provide power when the wind blows and the sun shines, not according to the electricity demand. My proposal is
  15. https://lenbilen.com/2022/04/09/the-transcontinental-aqueduct-a-realistic-way-to-save-lake-mead-and-reverse-the-desertification-of-the-american-southwest/ This aqueduct will cost about the same, or around 350 Billion dollars, and solve the water needs for the lower American Southwest, triple the hydroelectric power storage capacity for the nation and go a long way to save the rapidly depleting aquifers. If this is not done American Southwest will become a desert in the not too distant future. We are getting close.
  16. When the Transcontinental aqueduct has begun to provide water to Texas, New Mexico, Arizona, California and Mexico it is time to build the Trans-Rocky-Mountain aqueduct. The Trans-Rocky-Mountain Aqueduct will save Lake Powell and Lake Mead, and rejuvenate the American South-west. This solution is expensive, but when all costs are included, it can deliver 3.6 to 6 Million acre-feet / year at a cost of $2,290 per af, high, check the calculations here. This is the solution that can be done in the shortest time.
  17. To help save the Ogallala aquifer and provide water to the thirsty Platte river watershed it is time to build a South Platte River aquifer. It is drying up. This is a recent picture of the bone dry Platte River near Columbus Nebraska:

Something must be done. The wet areas are getting wetter because of pollution of land, air and rivers, and the dry areas are getting hotter and drier because of desertification.