Why Thorium? 21. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

India has an active Thorium program. • India has a flourishing and largely indigenous nuclear power program and did at one time expect to have 20,000 MWe nuclear capacity on line by 2020 and 63,000 MWe by 2032, but being India and subject to Indian bureaucracy and economic limitation the goals tend to get delayed. It aims to supply over 30% of electricity from nuclear power by 2050. • Because India is outside the Nuclear Non-Proliferation Treaty due to its weapons program, it was for 34 years largely excluded from trade in nuclear plant or materials, which has hampered its development of civil nuclear energy until 2009. • Due to these trade bans and lack of indigenous uranium, India has uniquely been developing a nuclear fuel cycle to exploit its reserves of thorium. • Now, foreign technology and fuel are expected to boost India’s nuclear power plans considerably.  All plants will have high indigenous engineering content. • India has a vision of becoming a world leader in nuclear technology due to its expertise in fast reactors and thorium fuel cycle. • India’s Kakrapar-1 reactor is the world’s first reactor which uses thorium rather than depleted uranium to achieve power flattening across the reactor core. India, which has about 25% of the world’s thorium reserves, is developing a 300 MW prototype of a thorium-based Advanced Heavy Water Reactor (AHWR). The prototype was fully operational by 2012, following which five more reactors will be constructed. Considered to be a global leader in thorium-based fuel, India’s new thorium reactor is a fast-breeder reactor and uses a plutonium core rather than an accelerator to produce neutrons. As accelerator-based systems can operate at sub-criticality they could be developed too, but that would require more research. India currently envisages meeting 30% of its electricity demand through thorium-based reactors by 2050.

“[F]ast reactors can help extract up to 70 percent more energy than traditional reactors and are safer than traditional reactors while reducing long lived radioactive waste by several fold,” Yukiya Amano, Director General of International Atomic Energy Agency (IAEA) in Vienna, explained to the Times of India.

Uranium isn’t common in India, but the country has the second largest store of Thorium, so the Prototype Fast Breeder Reactor (PFBR) in Kalpakkam uses rods of that element.

Arun Kumar Bhaduri, Director of the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, told the Times of India that the technology is safe: “[F]ast breeder reactors are far safer than the current generation of nuclear plants.”

With the PFBR, India is pioneering a kind of nuclear technology that could potentially be the country’s greatest renewable energy source. That’s a big step, especially since nuclear fission remains the only kind of nuclear reaction we’ve managed to sustain, though efforts to make nuclear fusion viable are still in the works.

India used the heavy water, natural Uranium method to produce its Plutonium Nuclear bombs. This is not the cheapest way to produce Nuclear Bombs, but it worked for India as they refused to join the Nuclear proliferation treaty. This technology works slightly better with Thorium rods, as long as a Plutonium sparkplug is provided, but U-233 is not well suited to make nuclear bombs, so the reactors became available. It is very old technology, but it has given India good experience with the Thotium-U-233 breeding, and modern fast breeders is the next step. U.S. should immediately join their development efforts and start very close cooperation developing modern Thorium based reactors.

Why Thorium? 9. Thorium based nuclear power is not suited for making nuclear bombs.

 Thorium based Nuclear Power does not produce much Plutonium-239, which is the preferred material used in nuclear bombs. The higher Plutonium isotopes and other TRansUraniums are about as nasty as they get, need expensive protection against terror attacks, and need to be stored for a very long time.

One anecdote from my youth. The time had come to apply to University, and to my delight I was accepted to Chalmers’ University in Sweden as a Technical Physics major. I felt, maybe I can do my part by becoming a Nuclear Engineer and help solve the energy needs of the future. The Swedes at that time championed the heavy water – natural Uranium program together with the Canadians and to some extent with the Indians. Sweden was and to some extent still is a non-aligned country, so it was not privy to any nuclear secrets, it had to go it alone. They settled on the heavy water moderated natural Uranium process because Sweden had an ambition to produce its own nuclear bomb. Officially this was never talked about, and I was not aware of it at that time. They could have gone with Thorium instead, but a Thorium based nuclear reactor  produces very little Plutonium, and what it produces is nearly all Pplutonium-238, not fissile and as such not suitable for bomb making.

I was excited to learn about all the possibilities and signed up for a couple of nuclear classes. One lab was to design a safety circuit, then run the heavy water research reactor critical and hopefully watch the reactor shut down from the safety circuit before the system safety circuit shutdown. About that time the word came that U.S. will sell partially enriched uranium at bargain basement prices if Sweden agreed to abandon the heavy water project and sign the nuclear non-proliferation treaty, a treaty being formulated by U.N.

Sweden was in awe about U.N, all the problems of the world were to be solved through it, and it had such a capable General Secretary in Dag Hammarskjöld, a Swede. I looked at the light water, partially enriched Uranium nuclear power plants being developed and decided to have no part with it, not due to safety concerns but it was the design that produced the most nuclear waste of any of the available designs. At that time there was still optimism that fusion would be ready by about the year 2010 or so. The cost of maintaining spent fuel in perpetuity was never considered, so light water reactors became the low cost solution.

India on the other hand refused to join the nuclear non-proliferation treaty, kept their heavy water program going and had by 1974 produced enough plutonium for one nuclear bomb, which they promptly detonated. They still use heavy water moderated reactors, but since India is low on Uranium but rich in Thorium they have now converted one heavy water reactor to Thorium with a Plutonium glow plug. It went on-line in 2011.

They are also developing molten salt Thorium reactors, but full production is still a few years off.

There we have it. We could have gone with Thorium from the beginning, but the cold war was on, and the civilian peaceful use of nuclear energy was still all paid for by nuclear weapons research and development. Once all the bombs we could ever wish for were developed the greatest asset of nuclear power became its greatest liability.

Why is U.S.A. doing so poorly in fighting the pandemic? Is it beecause they refuse HCQ and Ivermectin?

I looked at the statistics from https://www.worldometers.info/coronavirus/

It shows that the world has recorded 325,125,927 cases of the coronavirus and 5,550,676 deaths as of January 14 2022. U.S.A has recorded 66,250,206 cases and 872,332 deaths, or 20.4% of the world total cases but only 15.1% of the world’s deaths from the same virus. Great, we have more cases because we are doing more testing.

Not so, we have done 856 million tests, but the world has done over 4.8 billion tests, so our share of the testing is 17.8% or nearly the same as our part of the cases and deaths. But we are only 4.2% of the world population! This means we are doing three and a half times worse than the world as a total!

How can that be? We have the world’s best health care system with fantastic hospitals, full of state of the art equipment to monitor and do things that was unthinkable a decade ago. We are spending in excess of 10,000 dollars yearly per person on healthcare, while the global arithmetic average is less than 1200 dollars yearly per person, This means that most countries spend less than 1000 dollars yearly per person. In fact they are so poor that they cannot even think of spending for expensive patented medicines, so they are limited to the simplest generic prophylactic and therapeutic medicines. And you guessed it, they are mostly HydroxyChloroQuine and Ivermectin.

Let us take HCQ first: An Indian study found HCQ up to 74% effective as a prophylactic. See (There may be a cure for COVID-19 after all. Hydroxychloroquine (HCQ) works, both as a prophylactic and as cure if taken early.) It also works as a therapeutic. There were a number of countries that adopted HCQ as an early treatment. they had less than a third deaths per capita compared to the countries that didnt. This evaluation is from Sep. 2020. (If HCQ+Zinc+Zithromax had been approved for outpatient use as soon as symptoms of COVID-19 occurred we could have saved about 90000 lives by now!)

Ivermectin is even better than HCQ, both as a prophylactic and therapeutic against COVID. It is also more broadband than existing vaccines, so it will probably work against future variants as well, not just Delta and Omicron. Here are reports from a number of countries that are using Ivermectin because they are so poor they can not do much else: (How come CDC and NIH cannot notice how successful Ivermectin is combating COVID-19 worldwide?) (Add Japan to the success stories of countries treating COVID-19 patients with Ivermectin.) (Indonesia and India has shown the solution to end COVID-19. Use Ivermectin.)

Why are we not approving Ivermectin and HCQ? They are ultra safe and they work. There are two reasons CDC is a vaccine approving agency and want dependent customers to purchase expensive medicines, and to approve Ivermectin and HCQ at this stage would mean that they would confess they have caused hundreds of thousand deaths by their refusal to approve them even they were far safer than say Remdesivir which was approved immediately after just one study (Hint it is expensive). We need to reorganize NIH, FDA and CDC to be patient oriented, no longer beholden to the medico-industrial behemoth.This is my opinion.

Ivermectin for nearly all arriving refugees, but still not approved by CDC against COVID.

So, this much ridiculed horse cure is the recommended treatment for all Afghan refugees. Why not allow it as a recommended treatment for COVID?

https://www.cdc.gov/immigrantrefugeehealth/guidelines/overseas-guidelines.html

Vaccination Program for U.S.-bound Refugees:All Middle Eastern, Asian, North African, Latin American, and Caribbean refugees should receive presumptive therapy with:

Albendazole, single dose of 400 mg (200 mg for children 12-23 months) AND Ivermectin, two doses 200 mcg/Kg orally once a day for 2 days before departure to the United States.

All African refugees who did not originate from or reside in countries where Loa loa infection is endemic (Box 1) should receive presumptive therapy with: Albendazole, single dose of 400 mg (200 mg for children 12-23 months) AND Ivermectin, two doses 200 mcg/Kg orally once a day for 2 days AND Praziquantel, 40 mg/kg, which may be divided in two doses before refugees depart for the United States.

All sub-Saharan African refugees who originated from or resided in countries where Loa loa infection is endemic (Box 1) should receive presumptive therapy with: Albendazole, single dose of 400 mg (200 mg for children 12-23 months) AND Praziquantel, 40 mg/kg, which may be divided in two doses before departure to the United States.

Refugees from Loa loa-endemic countries (Box 1) in Africa should not receive presumptive ivermectin for strongyloidiasis prior to departure. Management of Strongyloides should be deferred until arrival in the United States, unless Loa loa is excluded by reviewing a daytime (10 AM to 2 PM) Giemsa-stained blood smear. Deferral of treatment for Strongyloides until after the refugee arrives in the United States is acceptable. Guidance is available for management of Strongyloides following arrival in the United States in the Domestic Intestinal Parasite Screening Guidance.

This was Ivermectin as an effective drug against parasites. How is it stacking up in fighting COVID?

“Several studies reported antiviral effects of ivermectin on RNA viruses such as Zika, dengue, yellow fever, West Nile, Hendra, Newcastle, Venezuelan equine encephalitis, chikungunya, Semliki Forest, Sindbis, Avian influenza A, Porcine Reproductive and Respiratory Syndrome, Human immunodeficiency virus type 1, and severe acute respiratory syndrome coronavirus 2.”

Professor Borody, the discoverer of the bacterial cause of stomach ulcers has this recommendation, saying his research has led him to a triple therapy of Ivermectin, zinc and an antibiotic – which are all TGA and FDA approved – which could be the fastest and safest way to stop the Victorian outbreak within 6-8 weeks. [See Professor Borody’s published research papers ORIC here http://orcid.org/0000-0002-0519-4698]

Professor Borody said, “These 3 medications are already approved. They do not need pre-clinical or clinical trials nor additional TGA approvals unless the aim is to combine in a single capsule, for example. Patient treatment programs have been done in the US and elsewhere which indicate it can work within 4-6 days.”

Professor Borody has reviewed the key antiviral scientific research literature and identified the combination of 3 drugs that are in chemists right now and can be prescribed by doctors immediately. The tablets can be taken at home as a preventive treatment by high risk individuals, or by those who test positive to minimise need for hospitalisation at the higher curative dose.

The therapy comprises:

  1. Ivermectin – TGA and FDA approved as an anti-parasitic therapy with an established safety profile since the 1970s. Known as the “Wonder Drug” from Japan.
  2. Zinc
  3. Doxycycline – TGA and FDA approved tetracycline antibiotic that fights infections, such as acne, urinary tract infections, intestinal infections, respiratory infections, eye infections, gonorrhea, chlamydia, syphilis, periodontitis (gum disease), and others.

Professor Borody says distribution teams could be deployed in Victoria’s hotspots to treat proven infected patients immediately, and people exposed or at risk could be taking the preventative dose.

Since then, Ivermectin was highly successful in combating COVID-19’s Delta variant in Uttar Pradesh, India’s largest state with over 205 million people. It’s most famous shrine is the Taj Mahal.

It is about time for CDC to approve and recommend the proper treatment with Ivermectin, Zinc and Doxycycline for a start, if for nothing else than to save a few hundred thousand lives.

The case for Thorium. 19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

India has an active Thorium program. • India has a flourishing and largely indigenous nuclear power program and did at one time expect to have 20,000 MWe nuclear capacity on line by 2020 and 63,000 MWe by 2032, but being India and subject to Indian bureaucracy and economic limitation the goals tend to get delayed. It aims to supply over 30% of electricity from nuclear power by 2050. • Because India is outside the Nuclear Non-Proliferation Treaty due to its weapons program, it was for 34 years largely excluded from trade in nuclear plant or materials, which has hampered its development of civil nuclear energy until 2009. • Due to these trade bans and lack of indigenous uranium, India has uniquely been developing a nuclear fuel cycle to exploit its reserves of thorium. • Now, foreign technology and fuel are expected to boost India’s nuclear power plans considerably.  All plants will have high indigenous engineering content. • India has a vision of becoming a world leader in nuclear technology due to its expertise in fast reactors and thorium fuel cycle. • India’s Kakrapar-1 reactor is the world’s first reactor which uses thorium rather than depleted uranium to achieve power flattening across the reactor core. India, which has about 25% of the world’s thorium reserves, is developing a 300 MW prototype of a thorium-based Advanced Heavy Water Reactor (AHWR). The prototype was fully operational by 2012, following which five more reactors will be constructed. Considered to be a global leader in thorium-based fuel, India’s new thorium reactor is a fast-breeder reactor and uses a plutonium core rather than an accelerator to produce neutrons. As accelerator-based systems can operate at sub-criticality they could be developed too, but that would require more research. India currently envisages meeting 30% of its electricity demand through thorium-based reactors by 2050.

“[F]ast reactors can help extract up to 70 percent more energy than traditional reactors and are safer than traditional reactors while reducing long lived radioactive waste by several fold,” Yukiya Amano, Director General of International Atomic Energy Agency (IAEA) in Vienna, explained to the Times of India.

Uranium isn’t common in India, but the country has the second largest store of Thorium, so the Prototype Fast Breeder Reactor (PFBR) in Kalpakkam uses rods of that element.

Arun Kumar Bhaduri, Director of the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, told the Times of India that the technology is safe: “[F]ast breeder reactors are far safer than the current generation of nuclear plants.”

With the PFBR, India is pioneering a kind of nuclear technology that could potentially be the country’s greatest renewable energy source. That’s a big step, especially since nuclear fission remains the only kind of nuclear reaction we’ve managed to sustain, though efforts to make nuclear fusion viable are still in the works.

 

The red dragon of China. World dominance by 2025 averted? A Limerick.

Insane is to praise the Chinese

and say they go green, planting trees;

for they lie, cheat and steal,

human rights they repeal.

We must stand, no more time to appease.

Beijing’s massive tree planting campaign has worsened air pollution in the city, a new study by Chinese scientists suggests. The “Green Great Wall” prevented dispersion of as much as 15 per cent of PM2.5 – health-damaging fine particulates less than 2.5 micrometres in diameter – during a major smog episode in the capital in January 2014, according to researchers. At its peak during the period studied, the PM2.5 reached 350 micrograms per cubic metre of air – 14 times the safety level recommended by the World Health Organisation.

Man-made forest slowed down the winds that otherwise help to disperse smog and turned the city into an enormous trap for air pollutants, according to the scientists.

How can that be?

China burned 51.2% of the world’s coal in 2012, USA produced 12.5%. China’s production was more than four times larger. This has now stabilized and was in 2018 47%, because India and the real developing world are increasing their dependence on coal for electricity production, and also for cooking meals.

This of course is with the Paris accord in mind. U.S. and the European countries are to limit their emissions and slowly diminish them, down to a per capita emission comparable to the mid 1800’s, while China, being a “developing” country is allowed to increase their emissions until 2030, and then stabilize them, not decrease them.

How can they be burning nearly half the world’s coal mined?

One reason is they are the world’s state controlled manufacturing company. They are also responsible for half the world’s Steel production. China produced 50.3% of the world’s crude Steel in 2015, USA produced 4.9%. China’s production was over 20 times larger than the U.S.Some of this steel was dumped below production cost to crush our domestic low end steel industry. An example: Rolled steel to make steel cans were exported at about $200 a ton, the production cost in the U.S. is more like $400 a ton. They can do this, since their environmental regulations only pay lip service to pollution. Remember how Pittsburgh was 60 years ago? China is much worse.

Cement production. China produced 51.4% of the world’s cement in 2015, USA produced 1.8%. China’s production was almost 30 times larger.

It takes a lot of concrete to build artificial islands so they can take control of the South China Sea. But they are building many other things,  Ghost Cities, but also an impressive infrastructure with high speed trains on elevated concrete tracks.

Worrisome as that may be, it isnothing compared to China,s dominance in Rare Earth Metals. Let me explain why rare earth metals are so important to our modern economy.

First, rare earth metals re not rare at all, they exist in small quantities together with Thorium and sometimes Uranium wherever other metals are mined.

The Lanthanides occur in quantity in Monazite, a byproduct of mining Phosphates, but also as a byproduct of mining Titanium, and even from some Iron ores. The rare earth metals are free to begin extraction if it was not for one thing, they also contain Thorium, and Thorium is radio-active, so in the mid 1980’s the NRC and IAEA reclassified Monazite and anything containing Thorium as a “Source Material” and after that it became too costly to comply with all the regulations for nuclear material, so all production of rare earth minerals ceased in the U.S.

China saw an opportunity to grab the world market for Rare Earth Metals and is now controlling about 94% of the supply of all rare earth metals.

So what are rare earth metals used for?

China now has a de facto monopoly on all usages of rare earth metals, and in the case of war or an embargo, not only are our precious cell phones and computers in jeopardy, so is our defense, night vision goggles, aircraft engines, navigation systems, laser guidance, just to name a few uses.

And not only that, we import the completed parts from China, even for our most sophisticated military equipment, such as the F35 aircraft, after telling the Chinese how to make the components. The very same components are now in China’s version of the F35, still under development, but in a year or so China will have their faithful copies made! A F35 aircraft contains about 935 pounds of rare earth metals.

This is clearly unsustainable, so in 2014  Congress tried to pass HR 4883 and         S 2006 to remedy the situation, but the bills got killed in review by none other than the defense department, citing National Security! Our only major rare earth metals mine reopened, only to go bankrupt in 2015. It has since reopened, but the ore is shipped to China for refining! One good point is that the Mountain Pass mine is scheduled to reopen the processing facilities late 2020.

The idea was that we should change our electricity production into renewable sources, such as wind and solar.

Wind power uses a lot of rare earth metals to get the most efficient generators, all made by China. Wind power is about maxed out, that is, if you care about birds, especially eagles and raptors. The allowable bald eagle kill was upped from 1200 to 4200 a year for all U.S. wind turbines during the Obama administration. Killed golden eagles and storks has a S250000 fine, paid by the electricity users, and if we build it out more, we may exterminate some species.

Solar power looked promising until pollution was taken into consideration.  China added 53 GW solar capacity in  2017.  The forecast for this year i 45 GW, and for next year 35 GW.

The efficiency of solar panels are drastically reduced by the layer of soot accumulating daily from air pollution. They have to be cleaned daily with water, and water is in short supply in northern China. The yellow river no longer reaches the ocean during large periods of the year, all water is spoken for. In southern India a solar farm used up so much water that the wells went dry and there was no more water for agriculture and people, except during the monsoon season. Germany has given up on their solar program except for special needs.

Where it rains, China pollutes. The Yang -Tse  river carries nearly half the plastic waste that is dumped in the ocean. It can be stopped, but it will mean a lot of energy, both man-power and electricity  to do all the cleanup.

The solution is found in Thorium power. Here are 25 reasons why we shouls jump on the opportunity to solve the energy crisis:

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

Did I mention that Thorium based reactors do not produce CO2, and molten salt reactors do not use water?

Oh – and wish President Trump well in our negotiations with China. Pray, if you believe.

 

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

The need to develop Thorium based Nuclear Energy as the major electric energy supply. 19. India is having an ambitious Thorium program.

India has an active Thorium program. • India has a flourishing and largely indigenous nuclear power program and did at one time expect to have 20,000 MWe nuclear capacity on line by 2020 and 63,000 MWe by 2032, but being India and subject to Indian bureaucracy and economic limitation the goals tend to get delayed. It aims to supply 25% of electricity from nuclear power by 2050. • Because India is outside the Nuclear Non-Proliferation Treaty due to its weapons program, it was for 34 years largely excluded from trade in nuclear plant or materials, which has hampered its development of civil nuclear energy until 2009. • Due to these trade bans and lack of indigenous uranium, India has uniquely been developing a nuclear fuel cycle to exploit its reserves of thorium. • Now, foreign technology and fuel are expected to boost India’s nuclear power plans considerably.  All plants will have high indigenous engineering content. • India has a vision of becoming a world leader in nuclear technology due to its expertise in fast reactors and thorium fuel cycle. • India’s Kakrapar-1 reactor is the world’s first reactor which uses thorium rather than depleted uranium to achieve power flattening across the reactor core. India, which has about 25% of the world’s thorium reserves, is developing a 300 MW prototype of a thorium-based Advanced Heavy Water Reactor (AHWR). The prototype is expected to be fully operational by 2011, following which five more reactors will be constructed. Considered to be a global leader in thorium-based fuel, India’s new thorium reactor is a fast-breeder reactor and uses a plutonium core rather than an accelerator to produce neutrons. As accelerator-based systems can operate at sub-criticality they could be developed too, but that would require more research. India currently envisages meeting 30% of its electricity demand through thorium-based reactors by 2050.

“[F]ast reactors can help extract up to 70 percent more energy than traditional reactors and are safer than traditional reactors while reducing long lived radioactive waste by several fold,” Yukiya Amano, Director General of International Atomic Energy Agency (IAEA) in Vienna, explained to the Times of India.

Uranium isn’t common in India, but the country has the second largest store of Thorium, so the Prototype Fast Breeder Reactor (PFBR) in Kalpakkam uses rods of that element.

Arun Kumar Bhaduri, Director of the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, told the Times of India that the technology is safe: “[F]ast breeder reactors are far safer than the current generation of nuclear plants.”

With the PFBR, India is pioneering a kind of nuclear technology that could potentially be the country’s greatest renewable energy source. That’s a big step, especially since nuclear fission remains the only kind of nuclear reaction we’ve managed to sustain, though efforts to make nuclear fusion viable are still in the works.

Twenty-two reasons to rapidly develop Thorium based Nuclear Power generation.

(The reasons keep piling up. A more updated 25 reasons are found here ).

We need badly to develop a Thorium based molten salt fast breeder nuclear reactor to develop our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutron, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

Here are 22 good reasons for Thorium:

1. Cheap and unlimited raw material.

2. Much less TRansUranium waste, 0.01% waste products compared to a Uranium-235 fast breeder.

3. Produces Pu-238 as one of the final TRans Uranium products, in short supply and much in demand for space exploration nuclear power.

4. Radioactive waste decays down to background radiation in 300 years instead of a million years.

5. Does not produce Plutonium 239, which is the preferred material used in nuclear bombs.

6. Produces isotopes that helps cure certain cancers.

7. Thorium Nuclear Reactors are earthquake safe.

8. No risk for a meltdown, the fuel is already molten.

9. Very high negative temperature coefficient leading to a safe and stable control.

10. Atmospheric pressure operating conditions, no risk for explosions.

11. Virtually no spent fuel problem, no storage or transport.

12.  Scales beautifully from small portable generators to full size power plants.

13. No need for evacuation zones, can be placed near urban areas.

14. Rapid response to increased or decreased power demands.

15. Lessens the need for an expanded national grid.

16. Russia has a Thorium program.

17. China is having a massive Thorium program.

18. India has an active Thorium program.

19.Lawrence Livermore Laboratories is developing a small portable self-contained Thorium reactor capable of being carried on a low-bed trailer.

20. The need for a Yucca Mountain nuclear storage facility will eventually go away.

21. Produces electricity at a cost of about 4 c/kWh.

22. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

1. Cheap and unlimited raw material. There is enough Thorium around for a million years at today’s worldwide energy generation level , and not only that, it is a by-product of mining heavy metals and rare earth metals. The price is the cost of extracting and refining, which can be as low as $40/Kg. No extra mining required for extracting the Thorium.

2. Much less TRansUranium waste, 0.01% waste products compared to a Uranium-235 fast breeder. The Thorium process has a much higher efficiency in fission than  the Uranium process. See the figure below.

3. Produces Pu-238 as one of the final TRans Uranium products, in short supply and much in demand for space exploration nuclear power.

NASA relies on pu-238 to power long-lasting spacecraft batteries that transform heat into electricity. With foreign and domestic supplies dwindling, NASA officials are worried the shortage will prevent the agency from sending spacecraft to the outer planets and other destinations where sunlight is scarce. Thorium reactors produce PU-238 as a “free” byproduct.  In 2009 Congress denied a request to produce more Pu-238 by traditional means, instead relying on Russia to sell us the plutonium. (Remember the Russian reset?) Russia made their last delivery in 2010.

4. Radioactive waste decays down to background radiation in 300 years instead of a million years. Initially a Thorium reactor produces as much radioactivity as other nuclear reactors, since fission converts mass to heat, but the decay products have a much shorter half-life. See the figure below.

5. Does not produce Plutonium239, which is the preferred material used in nuclear bombs. The higher Plutonium isotopes and other TRansUraniums are about as nasty as they get, and need expensive protection against terror attacks, and need to be stored for a very long time.

6. Produces isotopes that helps cure certain cancers. For decades, medical researchers have sought treatments for cancer. Now, Alpha Particle Immunotherapy offers a promising treatment for many forms of cancer, and perhaps a cure. Unfortunately, the most promising alpha-emitting medical isotopes, actinium-225 and its daughter, bismuth-213, are not available in sufficient quantity to support current research, much less therapeutic use. In fact, there are only three sources in the world that largely “milk” these isotopes from less than 2 grams of thorium source material. Additional supplies were not forthcoming. Fortunately, scientists and engineers at Idaho National Laboratory identified 40-year-old reactor fuel stored at the lab as a substantial untapped resource and developed Medical Actinium for Therapeutic Treatment, or MATT, which consists of two innovative processes (MATT-CAR and MATT-BAR) to recover this valuable medical isotope.

7. Earthquake safe. Thorium reactors have a very simple and compact design where gravity is the only thing needed to stop the nuclear reaction. Conventional Nuclear reactors depend on external power to shut down after a SCRAM, where poison rods fall down to halt the reaction.  The next figure shows the concept of a Thorium reactor.

The idea is to empty the fissile U-233 core through gravity alone. Since the fuel is already molten, it can run out into channels like pig-iron into cooling heat exchangers with  water supplied through gravity alone.

As we can see the reactor hardened structure is compact, and can be completely earthquake and tsunami proof. What can be sheared off are the steam pipes and external power, but the shutdown can complete without additional power.

8. No risk for a meltdown, the fuel is already molten. The fuel in a Thorium reactor is U-233 in the form of UraniumFluoride (UF4) salt that also contains Lithium and Beryllium, in its molten form it has a very low vapor pressure. The salt flows easily through the heat exchangers and the separators. The salt is very toxic, but it is completely sealed.

9. Very high negative temperature coefficient leading to a safe and stable control. This is another beauty of the molten salt design. The temperature coefficient is highly negative, leading to a safe design with simple and consistent feedback. What does that mean?  It means that if temperature in the core rises, the efficiency of the reaction goes down, leading to less heat generated. There is no risk for a thermal runaway. In contrast, Chernobyl used graphite moderated Uranium , and it suffered a thermal runaway as the operators bypassed three safety circuits trying to capture the last remaining power during a normal shut-down. The reactor splat, the graphite caught fire and the rest is history. Five days later two nuclear installations in Sweden shut down their reactors due to excessive radiation, but it took a while before they could figure out what had happened. First then did the Soviets confess there had been an accident.

10. Atmospheric pressure operating conditions, no risk for explosions. Materials subjected to high radiation tend to get brittle or soften up. Thorium reactors operate under atmospheric conditions so the choice of materials that can withstand both high temperatures and high radiation is much greater, leading to a superior and less expensive design.  There is no high pressure gas buildup and the separation stage can be greatly simplified.

11. Virtually no spent fuel problem, no storage or transport. I am following the events at Fukushima Nuclear Power plants with great interest. How ironic that the greatest risk is with the spent fuel, not with the inability to shut down the working units. The spent fuel issue is the real Achilles’ heel of the Nuclear Power Industry. Thorium power works differently as nearly all fuel gets consumed as it is generated. When the process shuts down, that is it. Only the radioactivity that is en route so to say will have to be accounted for, not everything generated thus far in the process. The difference is about 10000 to one in the size of the problem. Time to switch over to Thorium.

12.  Scales beautifully from small portable generators to full size power plants. One of the first applications was as an airborne nuclear reactor.

 Granted this was not a Thorium breeder reactor, but it proves nuclear reactors can be made lightweight. Thorium reactor may be made even lighter as long as they are not of the breeder type.

13. No need for evacuation zones, can be placed near urban areas. Thorium reactors operate at atmospheric pressure and have a very high negative temperature coefficient, so there is no risk for a boil-over. They are easily made earthquake-safe since no pressure vessel is needed.

14. Rapid response to increased or decreased power demands. The increase in power output to increased power demand is faster than in coal-fired power plant. All you have to do is increase the speed of flow in the core and it will respond with raised temperature.

15. Lessens the need for an expanded national grid. The National Electric grid is at the breaking point. It needs to be expanded, but neighborhood resistance is building in many areas where they need an expansion the most. The grid is also sensitive to terrorism activities.

 As we can see the national grid is extensive, and under constant strain. A way to lessen the dependency on the national grid is to sprinkle it with many small to medium sized Thorium Nuclear Power generators.  They can be placed on barges in rivers and along the coast, giving the grid maximum flexibility to respond in  case of an emergency.

16. Russia has a Thorium program This is a self-contained Thorium Nuclear Reactor on a barge. Coolant readily available. Hoist it a couple of cables and the town will have all the power it needs.

17. China is having a massive Thorium program. The People’s Republic of China has initiated a research and development project in thorium molten-salt reactor technology, it was announced in the Chinese Academy of Sciences (CAS) annual conference on Tuesday, January 25. An article in the Wenhui News followed on Wednesday. Chinese researchers also announced this development on the Energy from Thorium Discussion Forum. Led by Dr. Jiang Mianheng, a graduate of Drexel University in electrical engineering, the thorium MSR efforts aims not only to develop the technology but to secure intellectual property rights to its implementation. This may be one of the reasons that the Chinese have not joined the international Gen-IV effort for MSR development, since part of that involves technology exchange. Neither the US nor Russia have joined the MSR Gen-IV effort either. A Chinese delegation led by Dr. Jiang travelled to Oak Ridge National Lab last fall to learn more about MSR technology and told lab leadership of their plans to develop a thorium-fueled MSR.The Chinese also recognize that a thorium-fueled MSR is best run with uranium-233 fuel, which inevitably contains impurities (uranium-232 and its decay products) that preclude its use in nuclear weapons. Operating an MSR on the “pure” fuel cycle of thorium and uranium-233 means that a breakeven conversion ratio can be achieved, and after being started on uranium-233, only thorium is required for indefinite operation and power generation.

18. India has an active Thorium program. • India has a flourishing and largely indigenous nuclear power program and expects to have 20,000 MWe nuclear capacity on line by 2020 and 63,000 MWe by 2032.  It aims to supply 25% of electricity from nuclear power by 2050. • Because India is outside the Nuclear Non-Proliferation Treaty due to its weapons program, it was for 34 years largely excluded from trade in nuclear plant or materials, which has hampered its development of civil nuclear energy until 2009. • Due to these trade bans and lack of indigenous uranium, India has uniquely been developing a nuclear fuel cycle to exploit its reserves of thorium. • Now, foreign technology and fuel are expected to boost India’s nuclear power plans considerably.  All plants will have high indigenous engineering content. • India has a vision of becoming a world leader in nuclear technology due to its expertise in fast reactors and thorium fuel cycle. • India’s Kakrapar-1 reactor is the world’s first reactor which uses thorium rather than depleted uranium to achieve power flattening across the reactor core. India, which has about 25% of the world’s thorium reserves, is developing a 300 MW prototype of a thorium-based Advanced Heavy Water Reactor (AHWR). The prototype is expected to be fully operational by 2011, following which five more reactors will be constructed. Considered to be a global leader in thorium-based fuel, India’s new thorium reactor is a fast-breeder reactor and uses a plutonium core rather than an accelerator to produce neutrons. As accelerator-based systems can operate at sub-criticality they could be developed too, but that would require more research. India currently envisages meeting 30% of its electricity demand through thorium-based reactors by 2050.

19.Lawrence Livermore Laboratories is developing a small portable self-contained Thorium reactor capable of being carried on a low-bed trailer. A Democratic member of the United States House of Congress (Joseph Sestak) in 2010 added funding for research and development for a reactor that could use thorium as fuel and fit on a destroyer-sized ship.  Lawrence Livermore national laboratories are currently in the process of designing such a self-contained (3 meters by 15 meters) thorium reactor. Called SSTAR (Small, Sealed, Transportable, Autonomous Reactor), this next-generation reactor will produce 10 to 100 megawatts electric and can be safely transported via ship or truck.  The first units are expected to arrive in 2015, be tamper resistant, passively failsafe and have a operative life of 30+ years.

20. The need for a Yucca Mountain nuclear storage facility will eventually go away. Since Thorium consumes the fissile material as it is getting created, the need for a long term storage facility of the Yucca Mountain type will eventually go away. In remote locations there can be built Thorium Nuclear Power generators that consume spent material from other nuclear processes. The need to do it in remote locations is the hazard of the already existing nuclear wastes. It should be possible to reduce the existing stockpile of nuclear wastes and nuclear bombs by about 90% and make electricity in the process. The cost to do this is higher than the normal process due to the additional cost of security.

21. Produces electricity at a cost of about 4 c/kWh.  The cost to produce electricity with Thorium generators should be about 40% less than Advanced Nuclear and about 30 % less than from Coal (with scrubbers). Solar generation is about 4 times more expensive (without subsidies) Wind power is cheaper when the wind blows, but the generation capacity has to be there even when the wind doesn’t blow, so the only gain from wind power is to lessen the mining or extraction of carbon.  Even if we double the renewable power we will only go from 3.6% to 7.2% of total energy needed.  Hydroelectric  power is for all practical purpose maxed out, so all future increase must come from Coal, Natural Gas, Petroleum or Nuclear. Thorium powered Nuclear Generators is the way to go.

Many of the pictures are from a slide presentation given by David Archibald in Melbourne Feb 5 2011. He posted it “for the benefit of all” which I have interpreted as waving the copyright of the pictures

http://wattsupwiththat.com/2011/02/12/david-archibald-on-climate-and-energy-security/

The ten most attractive countries to invest in, and the ten worst.

Daniel Altman’s 2015 list of investment attractiveness by country is out. The ranking is based on an index for baseline profitability that assumes that three factors affect the ultimate success of a foreign investment: how much the value of an asset grows; the preservation of that value while the asset is owned; and the ease of repatriation of proceeds from selling the asset. The index combines measures for each of these factors into a summary statistic that conveys a country’s basic attractiveness for investment. Daniel Altman is the creator of the index and an Adjunct Professor at New York University’s Stern School of Business, in the Foreign Policy magazine.

How did it go? India jumped from number 6 to first, and Hong Kong, the 2014 leader slumped to the 11th position.

The list of the top ten is surprising, at least to a person unaccustomed to foreign investing.

1. India.

2. Qatar

3. Botswana.

4. Singapore.

5. Ghana.

6 Malaysia.

7. Mongolia.

8. Rwanda.

9. Zambia.

10. Sri Lanka.

How did the U.S.A. do? it came in as number 50 dropping 24 positions from 2014, when it came in as number 26.profitabilityindex

China dropped to number 65, down from number 60 in 2014.

And who are the ten worst countries to invest in? (The list only has 110 countries, so Iran, Cuba  and North Korea  among others are not included.)

101. Nigeria.

102. Belarus.

103. Italy.

104. Papua New Guinea.

105. Russia.

106. Lebanon.

107. Angola.

108. Dem. Rep. of Congo.

109. Argentina.

110. Venezuela.

The Hindu Digest added a nice picture to brag about the great progress India has made since Narendra Modi became Prime Minister.