Wind power failed the environmental test. There are better alternatives.

Brr, it is cold in Texas, over 3.5 million people are out of power, freezing rain is knocking out power lines and half of the wind turbines are out of commission until they thaw out. The wind chill is way below zero F, and in Galveston they had a snow thunderstorm on the beach!

Maybe wind power is not the best way to go.There are better ways.

That is not all. Efficient wind turbine generators use a lot of rare earth metals to achieve maximum efficiency on the magnets among other things. China still controls over 80% of all rare earth metals mining and refining. This is a national security risk.

How stupid can you get? Here is an example. To de-ice a 747 aircraft costs about 40,000 dollars. Add to this the cost of flying the helicopter, and the fuel it consumes while transporting the glycol from its base to the wind farm.

The rest of the quote: “And I am not sure about the universe.”

There are better solutions to our energy problem:

The many cases why Thorium Nuclear Power is the only realistic solution to the world’s energy problems.

Lest anyone should think: At least solar panels work well.  Not in this storm!

 

Clouds, water vapor and CO2 – why nearly all climate models fail. – and a Limerick.

 

Fear spreads up on Capitol Hill

The Climate change will break their will.

AOC: In Ten years

our world disappears!

She acts as a New Green Deal shill.

Quote from Alexandria Occasio-Cortez in January 2019: “Millennials and Gen Z and all these folks that come after us are looking up, and we’re like, ‘The world is going to end in 12 years if we don’t address climate change, and your biggest issue is how are we gonna pay for it?’ ” she said.

I beg to differ.

We live in only one world. As a concerned citizen I realize we have immense environmental challenges before us, with water pollution; from plastics in the ocean, excess fertilizer in the rivers, poison from all kinds of chemicals, including antibiotics, birth control and other medicines flushed down the toilet after going through our bodies, animals fed antibiotics, pest control, weed control and so on. Increasing CO2 is not one of the problems, it will in fact help with erosion control, and allow us to feed more people on less agricultural land with proper management, and require less fertilizer and water to do so. In fact, proper water management is a larger problem, with some rivers no longer even reaching the ocean. All water is already spoken for, especially in the 10 to 40 degrees latitude, where most people live.

Allow me to be somewhat technical and give the background to why I know we will never experience the thermal runaway they are so afraid of.

Many years ago I worked at Hewlett Packard on an Atomic Absorption Detector. It was a huge technical success but a commercial failure, as it was too expensive to use for routine applications. However it found a niche and became the detector of choice when dismantling the huge nerve gas stockpiles remaining from the cold war. I was charged with doing the spectrum analysis and produce the final data from the elements. One day two salesmen came and tried to sell us  a patented device that could identify up to 21 different elements with one analysis. They had a detector that divided the visual band into 21 parts, and bingo, with proper, not yet “fully developed” software you could now analyze up to 21 elements with one gas chromath analysis. What could be better? We could only analyze correctly four or five elements simultaneously. It turns out the elements are absorbing in the same wavelength bands, scientifically speaking they are not orthogonal, so software massaging can only go so far. It turned out that the promised new detector was inferior to what we already had and could only quantify three or 4 elements at the most.

In the atmosphere the two most important greenhouse gases are water vapor and CO2 with methane a distant third. Water vapor is much more of a greenhouse gas everywhere except near the tropopause high above the high clouds and near the poles when the temperature is below 0 F, way below freezing. A chart shows the relationship between CO2 and water vapor:

Image result for h20 and co2 as greenhouse gases

Source: http://notrickszone.com/2017/07/31/new-paper-co2-has-negligible-influence-on-earths-temperature/

Even in Barrow, Alaska water vapor is the dominant greenhouse gas. Only at the South Pole (And North Pole) does CO2 dominate (but only in the winter).

All Climate models take this into account, and that is why they all predict that the major temperature increase will occur in the polar regions with melting icecaps and other dire consequences. But they also predict a uniform temperature rise from the increased forcing from CO2 and the additional water vapor resulting from the increased temperature.

This is wrong on two accounts. First, CO2 and H2O gas are nor orthogonal, that means they both absorb in the same frequency bands. There are three bands where CO2 absorbs more than H2O in the far infrared band, but other than that H2O is the main absorber. If H2O is 80 times as common as CO2 as it is around the equator, water vapor is still the dominant absorber, and the amount of CO2 is irrelevant.

Secondly gases cannot absorb more than 100% of the energy available in any given energy wavelength! So if H2O did absorb 80% of the energy and CO2 absorbed 50%, the sum is not 130%, only 90%. (0.8 + 0.5×0,2 or 0.5 + 0.8×0.5). In this example CO2 only adds one quarter of what the models predict.

How do I know this is true? Lucky for us we can measure what increasing CO2 in the atmosphere has already accomplished. For a model to have credibility it must be tested with measurements, and pass the test. There is important evidence suggesting the basic story is wrong. All greenhouse gases work by affecting the lapse rate in the tropics. They thus create a “hot spot” in the tropical troposphere. The theorized “hot spot” is shown in the early IPCC publications. (Fig A)

Fig. B shows observations. The hotspot is not there. If the hotspot is not there, the models must be wrong. So what is wrong with the models? This was reported in 2008 and the models still assume the additive nature of greenhouse gases, even to the point when more than 100% of the energy in a given band is absorbed.

How about Methane? Do not worry, it absorbs nearly exclusively in the same bands as water vapor and has no measurable influence on the climate.

But it will get warmer at the poles. That will cause melting of the ice-caps? Not so fast. When temperature rises the atmosphere can hold more water vapor, so it will snow more at higher latitudes. While winter temperatures will be higher with more snowfall, this will lower the summer temperatures until the extra snow has melted. And that is what is happening in the Arctics

As we can see from this picture, the winters were about 5 degrees warmer, but starting from late May through early August temperatures were lower. It takes time to melt all the extra snow that fell because of the less cold air, able to contain more water vapor.

These are my suggestions

  1. Do not worry about increasing CO2 levels. The major temperature stabilizer is clouds, and they will keep the earth from overheating by reflecting back into space a large amount of incoming solar radiation. Always did, and always will, even when the CO2 concentration was more than 10000 ppm millions of years ago. Ice ages will still come, and this is the next major climate change, maybe 10000 years from now, probably less.
  2. Clean up rivers, lakes and oceans from pollution. This is a priority.
  3. Limit Wind turbine electric energy to areas not populated by large birds to save the birds. Already over 1.3 million birds a year are killed by wind turbines, including the bald and Golden Eagles that like to build their aeries on top of wind turbines.
  4. Do not build large solar concentration farms. They too kill birds.
  5. Solar panels are o.k. not in large farms, but distributed on roofs to provide backup power.
  6. Exploit geothermal energy in geologically stable areas.
  7. Where ever possible add peak power generation and storage capacity to existing hydroelectric power plants by pumping back water into the dams during excess capacity.
  8. Add peak power storage dams, even in wildlife preserves. The birds and animals don’t mind.
  9. Develop Thorium based Nuclear Power. Russia, China, Australia and India are ahead of us in this. Streamline permit processes. Prioritize research. This should be our priority, for when the next ice age starts we will need all the CO2 possible.
  10. Put fusion power as important for the future but do not rush it, let the research and development be scientifically determined. However, hybrid Fusion -Thorium power generation should be developed.
  11. When Thorium power is built up and has replaced coal and gas fired power plants, then is the time to switch to electric cars, not before.
  12. Standard Nuclear Power plants should be replaced by Thorium powered nuclear plants, since they have only 0,01% of the really bad long term nuclear waste.
  13. Start thinking about recovering CO2 directly from the air and produce aviation fuel. This should be done as Thorium power has replaced coal and gas fired power plants.
  14. This is but a start, but the future is not as bleak as all fearmongers state.

John Kerry, the climate Czar, a Limerick.

John Kerry in private jet flies

all over our God-given skies.

Carbon neutral he ain’t;

not my only complaint.

Spews out all the climate scare lies.

Yes, John Kerry must have been the only choice for environmental Czar. After all, he already has six houses, twelve cars, a yacht and his own private jet.

He will promote off-shore wind power, except outside one of his homes, solar power, but no new power lines anywhere near one of his homes, anddo away with coal.

I too want to limit coal consumption, but for an entirely different reason. I want to save some for future generations, and especially when we enter the next ice-age, which may be nearer than most people think.

Now, much better than spend all our natural resources on building wind and solar power is to rapidly develop Thorium Nuclear power for most electricity production. It is the only realistic power source for a Moon colony, and in the last few days of the Trump administration small portable nuclear power stations were promoted for military use. As far as I know, President Biden has not yet rescinded that executive order. Let’s hope he won’t.

 

 

 

Climate change and tornadoes. Are they really increasing?

One of the sacred tenets of climate change is that extreme weather is increasing. Is that really so?

Let us look at tornadoes. They occur when cold and hot air masses collide and in the fringes of hurricanes. Sometimes they can also be triggered by frontal thunderstorms. So if extreme weather increases by time, so should tornadoes, both in severity and numbers. Let us see if that is so.

So far this year, the number of tornadoes are slightly below normal:

If we look at “tornado alley”, the state of Oklahoma we see that there has been about the same number of tornadoes for the last  65 years

but but the number of strong tornadoes , F2, F3, F4 and f5 have been trending down for the same 65 years. How is this statistics holding up for U.S. as a whole?

Severe tornado trend is down:

And most significant of all, the worst tornadoes of all are declining. The last F5 tornado occurred in 2013!

Thanks to increased CO2, the poles are slightly less cold in the winter, while the temperatures at the equator are not changing with increased CO2, water vapor is the all dominant greenhouse gas, there is less temperature gradient between equator and poles, leading to less violent weather. While the number of tornadoes stay about constant, the number of strong tornadoes decrease. This is good news.

Climate change and droughts and wildfires.

History shows us there has always been climate change, from ice age to the Minoan temperature optimum to the Roman warm period to the dark ages to the medieval warm period to the little ice age to now. The question is, where does the climate go from here, how much will it warm from here, or will it start cooling again? One question is; will wildfires contribute to global warming, or will the smoke act as a cooling agent? The only way to give an answer as a scientist is to look at what the wildfire trends are. Wildfires have decreased 25% worldwide in the last 15 years!  This is according to NASA:the full article is in https://earthobservatory.nasa.gov/images/145421/building-a-long-term-record-of-fire

One recent confession from the governor of California!

 

The question is then: Why are wildfires decreasing?

One possible exclamation, droughts are decreasing. Let us check:

No, there is no discernible trend in droughts.

Since the beginning of industrialization CO2 has risen about 50%. CO2 is the feed-stock for all plants and indeed the earth is getting greener!

Yes, most areas are getting greener. There are a few areas that are getting less green, such as the southern edge of the Sahara Desert, the South American Gran Chaco, the American South West and the edges of the Gobi desert. The global environmental challenges are still enormous, but thanks to the overall increased vegetation the earth can now feed an additional 2 billion people, not to mention provide livable habitat for many more animals.

What increased CO2 does to global temperatures will come in future installments.

Climate change and wildfires. The problem is more due to forest management.

The natural life cycle of forests in the dry part of western United States is rejuvenation and growth, interrupted by forest fires. In fact, the lodgepole pine requires a fire to release the seeds in the cones. Without the fire they will not  germinate. Forest fires every generation is the normal occurrence for the dry, western forests. Then in the 1930’s, to stop the wild fires they started forest management in earnest, dead trees removed and underbrush cleared, and wildfires were cut by over 90%. They also harvested a lot of good, mature trees, but that is a different story. The chart below tell the facts:

Forest fires were very few from the late 50’s to late 90’s. But with forest management comes a price. Nature can no longer support as many birds and animals as before, and some species were already vulnerable and close to extinction. So, partly due to the power of the Sierra Club and other organizations it was decided to return nature to its original state as much as possible. That would be fine except we no longer live in the 19’th century, when California had less than a million inhabitants. It now has 40 million inhabitants and use up all the water that rains on it and more. People have to live somewhere, so they make beautiful settlements in tinder dry forests. This is the problem out west. You can not have settlements in an unmanaged forest and get away with it, the fire will get you sooner or later. The solution is to set aside some forest lands for natural growth, but only where nobody lives and manage all other forests. Climate change has very little to do with western forest fires, there has always been years of droughts, interrupted by torrential rains. As it was in biblical times in Israel and Egypt, so it is in the American west.

CO2 concentration has increased 50% since pre-industrial times causing climate change. Thorium Nuclear Power is the answer. A Limerick.

As CO2 warms up the poles

burned oil, gas and coal play their roles.

CO2 is still good;

makes plants green, grows more food,

and clouds are the climate controls.

We live in interesting times, the CO2 concentration has increased 50% since the beginning of industrialization. In the last 30 years the level has risen 17%, from about 350 ppm to nearly 410 ppm. This is what scares people. Is is time to panic and stop carbon emissions altogether as Greta Thunberg has suggested?As if on cue the climate models have been adjusted, and they suddenly show a much higher rate of temperature increase, in this case what is supposed to happen to global temperatures for a doubling of CO2 from pre-industrial times, from 270ppm to 540ppm.

There are two ways to approach this problem. The models make certain assumptions about the behavior of the changing atmosphere and model future temperature changes. This is the approach taken by IPCC for the last 32 years. These models are all failing miserably when compared to actual temperature changes.

The other way i to observe what is actually happening to our temperature over time as the CO2 increases. We have 50 years of excellent global temperature data, so with these we can see where, when and by how much the earth has warmed.

The most drastic temperature rise on earth has been in the Arctic above the 80th latitude. In the winter of 2019 it was 4C above the 50 year average. See charts from the Danish Meteorological Institute:

Note, there is no increase at all in the summer temperatures!

The fall temperature saw an increase of 4C and the spring temperature saw an increase of about 2.5C.

Notice: In this chart the there is no recorded summer temperature increase at all, but the onset of fall freezing was delayed by 3 weeks.

The 5 thru 8C winter rise of temperature is significant, most would even say alarming, but my response is, why is that?

To get the answer we must study molecular absorption spectroscopy and explain a couple of facts for the 97% of all scientists who have not studied molecular spectroscopy. IPCC and most scientists claim that the greenhouse effect is dependent on the gases that are in the atmosphere, and their combined effect is additive according to a logarithmic formula. This is true up to a certain point, but it is not possible to absorb more than 100% of all the energy available in a certain frequency band! For example: If water vapor absorbs 50% of all incoming energy in a certain band, and CO2 absorbs another 90% of the energy in the same band, the result is that 95% is absorbed, (90% + 50% * (100% – 90%)),  not 140%, (90% + 50%).

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency range s they absorb.

For this we will have to look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

The red area represents the observed amount of solar radiation that reaches the earth’s surface, the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is re-emitted. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us  now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 microns. Of them the 2.7 and 4.3 micron bands absorb where there is little black body radiation, the only band that is of interest is at 15 microns, and that is in a band where the black body radiation has its maximum. However it is also in a band where water vapor also absorb, not as much as CO2,only about 20% to 70% as much. Water vapor or absolute humidity is highly dependent on the temperature of the air, so at 30C there may be 50 times as much water vapor, at 0C there may be ten times as much water vapor, and at -25C there may be more CO2 than water vapor. At those low temperatures the gases are mostly additive. In the tropics with fifty times more water vapor than CO2, increased CO2 has no influence on the temperature whatsoever. Temperature charts confirm this assertion:

Here the temperature in the tropics displays no trend whatsoever. It follows the temperature of the oceans, goes up in an El Niño and down in a La Niña. The temperature in the southern hemisphere shows no trend. In the northern temperate region there is a slight increase, but the great increase is occurring in the Arctic. There is no increase in the Antarctic yet even though the increase in CO2 is greater in the Antarctic and the winter temperature in the Antarctic is even lower than in the Arctic. So CO2 increase cannot be the sole answer to the winter temperature increase in the Arctic.

There is an obvious answer. When temperatures increase the air can contain more moisture and will transport more moisture from the tropics all the way to the arctic, where it falls as snow. Is the snow increasing in the Northern Hemisphere?

Let us see what the snow statistics show. These are from the Rutgers’ snow lab.

The fall snow extent is increasing, and has increased by more than 2 percent per year.

The winter snowfall has also increased but only by 0.04 percent per year. The snow covers all of Russia, Northern China, Mongolia, Tibet, Kashmir and northern Pakistan, Northern Afghanistan, Northern Iran, Turkey, Part of Eastern Europe, Scandinavia, Canada, Alaska, Greenland and part of Western and Northern United States.

In the spring on the other hand the snow pack is melting faster, about 1.6 percent less snow per year. One of the major reasons for an earlier snow-melt is that the air is getting dirtier, especially over China, and to some extent Russia. The soot from burning coal and mining and manufacturing changes the albedo of the snow. The soot is visible on old snow all the way up to the North Pole. The other reason is that the poles are getting warmer. In the fall and winter it is mostly due to increased snowfall, but in the spring, as soon as the temperature rises over the freezing point, melting occurs.

So the warming of the poles, far from being an impending end of mankind as we know it, may even be beneficial. Warmer poles in the winter means less temperature gradient between the poles and the tropics, leading to less severe storms. They will still be there, but less severe.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, accomplished with only the fertilizing effect of CO2, the earth can now keep another 2 billion people from starvation, not to mention what it does to increase wild plants and wildlife. More vegetation also helps to combat erosion.

Having said that, I am still a conservationist. Coal, oil and gas will run out at some time, and I for one would like to save some for future generations, not yet born. In addition I would like to minimize the need for mining, which can be quite destructive to the environment.

The best solution is to switch most electricity generation to Thorium molten salt nuclear power. There are many reasons why this should be done as a priority.

Here are some of them:

The case for Thorium. 1. A million year supply of Thorium available worldwide.

The case for Thorium. 2. Thorium already mined, ready to be extracted.

The case for Thorium. 3. Thorium based nuclear power produces 0.012 percent as much TRansUranium waste products as traditional nuclear power.

The case for Thorium. 4. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.

The case for Thorium. 5. Thorium nuclear power is only realistic solution to power space colonies.

The case for Thorium. 6. Radioactive waste from an Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick.

The case for Thorium. 7. Thorium based nuclear power is not suited for making nuclear bombs.

The case tor Thorium. 8. Produces isotopes that helps treat and maybe cure certain cancers.

The case for Thorium. 9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.

The case for Thorium. 10. Molten Salt Liquid Fluoride Thorium Reactors cannot have a meltdown, the fuel is already molten, and it is a continuous process. No need for refueling shutdowns.

The case for Thorium. 11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

The case for Thorium 13. Virtually no spent fuel problem, very little on site storage or transport.

The case for Thorium. 14. Liquid Fluoride Thorium Nuclear reactors scale beautifully from small portable generators to full size power plants.

The case for Thorium. 15. No need for evacuation zones, Liquid Fuel Thorium Reactors can be placed near urban areas.

The case for Thorium. 16. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

The case for Thorium. 17. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

The case for Thorium. 18. Russia has an active Thorium program.

The case for Thorium. 19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

The case for Thorium 20. China is having a massive Thorium program.

The case for Thorium. 21. United States used to be the leader in Thorium usage. What happened?

The case for Thorium. 22. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

The case for Thorium. 23. With a Molten Salt Reactor, accidents like Chernobyl are impossible.

The case for Thorium. 24. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

The case for Thorium. 25. Will produce electrical energy at about 4 cents per kWh.

The case for Thorium. 26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles.

The case for Thorium. 27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed.

The case for Thorium 28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

Published by

lenbilen

Retired engineer, graduated from Chalmers Technical University a long time ago with a degree in Technical Physics. Career in Aerospace, Analytical Chemistry, computer chip manufacturing and finally adjunct faculty at Pennsylvania State University, taught just one course in Computer Engineering, the Capstone Course.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Post navigation

The case for Thorium 28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

US reveals plan for nuclear power plant on the MOON that could power lunar Space Force base

NASA astronauts could one day live on the Moon inside a base powered by a lunar nuclear plant.

That’s according to plans shared by the US Department of Energy, which hopes to have the sci-fi power station up and running by 2027.

Nasa may one day build a nuclear power plant on the Moon.

The DoE on Friday put out a request online for ideas from the private sector on how to build such a contraption.

Dubbed a fission surface power system, the station could help man survive harsh environments on the Moon, Mars and beyond.

“Small nuclear reactors can provide the power capability necessary for space exploration missions of interest to the Federal government,” the DoE wrote in the notice published Friday.

Nasa has plans to put astronauts on the Moon in 2024 – the first manned mission to the lunar surface in almost five decades.

Nasa plans to establish a permanent base on the Moon in 2028

 
Nasa plans to establish a permanent base on the Moon in 2028.

The space agency has said it wants to set up a permanent base on Earth’s rocky neighbour in 2028. The base will help launch future missions to Mars.

Questions remain over what will power the base. Nasa would like to use solar panels, but the most power is needed during the 14 day lunar night every month, so nuclear power is the only practical solution.

It seems the space agency, working with the The Idaho National Laboratory and Department of Energy, is at least exploring the nuclear option.

According to the notice published to the DoE’s website, officials are looking for ideas on how to build a mostly autonomous lunar power station.

Only Molten Salt Thorium reactors would fit the bill.

It should work for 10 years at full power and boast a modular design that allows power units to connect together like Lego bricks.

Would-be designers are asked to whip something up that can survive the surface of Mars without modification.

They can be made very compact and modular

The case for Thorium. 27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed.

It seems that electric powered vehicles are finally taking off, and sales are ready to explode. The Tesla electric car company capitalization value has increased eight-fold in the last half year, and is now worth more on paper than GM, Ford, Chrysler and Honda combined .

If CO2 is the great driver of environmental destruction, never mind that the increased CO2 is feeding 2 billion more people than before thanks to the greening effect of increased CO2, then we should work at warp speed to develop the additional electricity needs that will arise with all electric vehicles coming to market needing charging stations.

It makes no sense to build more coal and gas fired electric plants, replacing one CO2 generator with another, the best wind power sites are already taken, waste, geothermal and solar power is still a pipe dream, so, what to do?

Conventional nuclear power is limited and requires a very long and extensive approval process, partly due to the not in my backyard regulation attitude.  We are already the world’s largest importer of Uranium, and the world’s supply is to a large extent controlled by non allies. .

How do you eliminate all Coal and natural gas electric plants? Look at the U.S usage: (Last  year 2016)

Image result for electric production"

We can see that renewable energy will not suffice. The only real answer is to expand nuclear electricity, but we are already the world’s biggest importer of Uranium. (The Uranium One deal, when we sold 20% of our Uranium mining rights to Russia did not help, but we were in trouble even before ). No, the only real answer is to rapidly develop molten salt Thorium nuclear electricity production. They do not require water for cooling, so they can be placed anywhere where additional capacity is needed, eliminating rapid expansion of the electric grid.

Let us go to it now!

The case for Thorium 20. China is having a massive Thorium program.

China is having a massive Thorium program. The People’s Republic of China has initiated a research and development project in thorium molten-salt reactor technology. The thorium MSR efforts aims not only to develop the technology but to secure intellectual property rights to its implementation. This may be one of the reasons that the Chinese have not joined the international Gen-IV effort for MSR development, since part of that involves technology exchange. Neither the US nor Russia have joined the MSR Gen-IV effort either.
China is currently the largest emitter of CO2 and air pollutants by far, and according to the Paris accord was allowed to emit six times as much pollutants as the U.S. by 2030, being a “developing nation”. Their air quality is already among the worst in the world so something had to be done if they were to achieve world dominance by 2025 and total rule by 2030. Only Thorium can solve the pollution problem and provide the clean energy needed for the future. Regular Uranium Nuclear reactors require large amounts of water and Molten Salt Thorium reactors require little water to operate.

Geneva, Switzerland, 21 August 2018 – As the world struggles with a record-breaking heatwave, China correctly places its trust in the fuel Thorium and the Thorium Molten Salt Reactor (TMSR) as the backbone of its nation’s plan to become a clean and cheap energy powerhouse.
​​The question is if China will manage to build a homegrown mega export industry, or will others have capacity and will to catch up?
For China, clean energy development and implementation is a test for the state’s ability. Therefore, China is developing the capability to use the “forgotten fuel” thorium, which could begin a new era of nuclear power.​
The first energy system they are building is a solid fuel molten salt reactor that achieves high temperatures to maximize efficiency of combined heat and power generation applications.
However, to fully realize thorium’s energy potential and in this way solve an important mission for China – the security of fuel supply – requires also the thorium itself to be fluid. This is optimized in the Thorium Molten Salt Reactor (TMSR).
The TMSR takes safety to an entirely new level and can be made cheap and small since it operates at atmospheric pressure, one of its many advantages. Thanks to its flexible cooling options it can basically be used anywhere, be it a desert, a town or at sea. In China this is of special interest inland, where freshwater is scarce in large areas, providing a unique way to secure energy independence.
“Everyone in the field is extremely impressed with how China saw the potential, grabbed the opportunity and is now running faster than everyone else developing this futuristic energy source China and the entire world is in a great need of.”
– Andreas Norlin, Thorium Energy World
Picture
China is not telling all they are doing on Nuclear Energy.