Hydroxychloroquine + Zinc is the answer? Check the death rates of nine countries that use it.

This is a very interesting chart:

But wait. Not so fast. These countries have a younger population, and the death rate is much lower for younger people. This chart tells it all.

The death rate doubles for every 8 years as you age or about 9% per year. The world median age is 30.4 years. So let the world death rate be the norm

World death rate as of May 21 is 6.42% of diagnosed cases.

Turkey: Death rate 2.77%, median age 30.9, adjusted death rate 2.64%

South Korea: Death rate 2.37%, median age 30.9, adjusted death rate 2.26%

Malaysia: Death rate 1.61%, median age 28.5, adjusted death rate 1.91%

Senegal: Death rate 1.13%, median age 18.8, adjusted death rate 3.00%

Costa Rica: Death rate 1.11%, median age 31.3, adjusted death rate 1.02%

United Arab emirates: Death rate 0.88%, median age 30.9, adjusted death rate 0.84%

Bahrain: Death rate 1.43%, median age 32.3, adjusted death rate 1.20%

Morocco: Death rate 2.70%, median age 29.3, adjusted death rate 2.92%

Russia: Death rate 1.00%, median age 30.9, adjusted death rate 0.95%

Taking the average, not adjusted for the size of the populations we get the average adjusted death rate for countries, where people are taking HCQ + Zinc when diagnosed positive, is 1.89%.

This means that the risk of death is reduced by a factor of 3.4 if HZQ + Zinc is taken as early as possible after a positive diagnosis for coronavirus!

These 9 countries are living proof of it. Why are we not implementing it today?

 

 

 

Coronavirus death rates and trends for the five worst states versus the five best states. Look at Michigan versus South Dakota.

The trend of the five worst and the five best states of Covid-19 death rates versus percent of population tested:

State                     death rate               trend   percentage of population tested

.                             May 8      May 11  up/down     May 8   May 11

  1.  Michigan              9.48%        9.64%    up                2.4%       3.1%

2.  Connecticut      8,87%        8.91%   up                3.1%        3.7%

3.  New York          7.80%        7.80%     __                 5.6%      6.2%

4.  Lousiana           7.23%       7.32%     up                 4.4%      4.9%

5.  New Jersey       6.55%       6.71%     up                 4.4%      4.9%

….

46. Tennessee         1.66%      1.61%    down             3.4%       4.0%

47. Nebraska           1.17%       1.16%  down             2.0%        2.5%

48. Wyoming           1.08%      1.05%   down            2.1%         2.3%

49. Utah                    1.03%       1.06%  up                 4.3%          4.7%

50. South Dakota     0.98%      0.94%   down            2.4%         2.7%

Beside from the obvious fact that the five worst states are all run by Democrat Governors and the five best state are all run by Republicans, these are my observations:

The five worst states show a rising death rate, even though the test rate is increasing. The five best state show a falling death rate, which is to be expected as testing is increased.

Michigan has a Detroit problem. The COVID-19 death rate there is over 10%, many got turned away from the few hospitals and were sent home without first being tested. Governor Gretchen Whitmer seems more interested in controlling the healthy population than to protect the vulnerable.

Why Connecticut is second on the list I don’t know, but Hartford County has a problem with a death rate over 10%. It is also next to New York, where the death rate in New York City still is either 7.92% or 10.7% if you include probable deaths.

The problem with New York is that Governor Cuomo ordered nursing home facilities to accept COVID-19 patients, they are not set up to handle highly contagious patients, and so the infection and death rate among the most vulnerable population skyrocketed. One interesting statistics is that two thirds of all New York COVID-19 cases were from people staying home, not going out at all.

The problem with Louisiana is that it let Mardi Gras proceed, people came, did their thing and went back to where they came from, often to under-served areas.

New Jersey is next to New York. Need I say more?

On the other hand, the five best states concentrated their efforts to protect the at risk people, concentrating on hygiene and social distancing rather than trying to micromanage the healthy population. There seems to be no improvement in the outcome by adding testing. In addition the death rate among the five worst states is still rising, whereas the death rate in the five best states is declining.

Governor Kristi Noem of South Dakota, the state with the best outcome of all states so far did order a clinical test of using the combination Hydroxychloroquine + Azithromycin + Zinc for five days and that may be the reason the death rate is less than 1 percent. Unfortunately the FDA is concerned that hydroxychloroquine and chloroquine are being used inappropriately to treat non-hospitalized patients for coronavirus disease (COVID-19) or to prevent that disease.  Quote:” We authorized their temporary use only in hospitalized patients with COVID-19 when clinical trials are not available, or participation is not feasible, through an Emergency Use Authorization (EUA).  These medicines have a number of side effects, including serious heart rhythm problems that can be life-threatening.”

Here is my suggestion: Issue an executive order opening up a clinical study in the effectiveness of COVID-19 treatment with Hydroxychloroquine + Azithromycin + Zinc for five days, and open it up to any qualified Physician or Nurse Practitioner who want to participate. They do the heart test, check for other ailments and report the results to a central data base and a follow up report, and even if it is not a double blind study, once you have a million or so results the FDA can approve the medication. In the meantime over 90% of the patients were getting better, and hopefully nobody had given it to patients with severe preexisting heart conditions. The risk is minimal. It is already approved for Lupus, Rheumatism and Malaria, and the same protocol should apply here.

It is very important the drugs are administered as early as possible. By the time the patient is admitted to a hospital it may be too late. Especially if the patient is already on a ventilator it may do more harm than good.

Why is this study even necessary? This medication is too cheap, it is generic, so no pharmaceutical company is willing to foot the bill on something unprofitable, so it must be done by a university or through a government agency.

It is not that daring a thing to do. Here is a result of a COVID-19 study with more than 6,200 physicians in 30 countries.

  • The three most commonly prescribed treatments among COVID-19 treaters are 56% analgesics, 41% Azithromycin, and 33% Hydroxychloroquine
  • Hydroxychloroquine usage among COVID-19 treaters is 72% in Spain, 49% in Italy, 41% in Brazil, 39% in Mexico, 28% in France, 23% in the U.S., 17% in Germany, 16% in Canada, 13% in the UK and 7% in Japan
  • Hydroxychloroquine was overall chosen as the most effective therapy among COVID-19 treaters from a list of 15 options (37% of COVID-19 treaters)
    • 75% in Spain, 53% Italy, 44% in China, 43% in Brazil, 29% in France, 23% in the U.S. and 13% in the U.K.
  • The two most common treatment regimens for Hydroxychloroquine were:
    • (38%) 400mg twice daily on day one; 400 mg daily for five days
    • (26%) 400mg twice daily on day one; 200mg twice daily for four days
  • Outside the U.S., Hydroxychloroquine was equally used for diagnosed patients with mild to severe symptoms whereas in the U.S. it was most commonly used for high risk diagnosed patients
  • Globally, 19% of physicians prescribed or have seen Hydroxychloroquine prophylactically used for high risk patients, and 8% for low risk patients.

And this is a very recent tweet from president Donald Trump, without which frequent and persistent recommendation this drug combination would have already been approved, as it is in at least 12 other countries.

  • Hcq

 

Clinical trials take too long. With the COVID-19 virus acting on a time scale of 3 days, not 3 years, allow unlimited trials now!

The medicine suppliers have to go through a lot to get a new drug approved. There are the double blind tests that can take years to verify, and some of the people in the protocol are given placebos that only produce the side-effects, not the potential cure. Some of these people may die as a result, but that the cost of getting a drug approved. The cost can be upwards of 10 million dollars, so as a reward the Medical supplier company gets awarded a patent for the new medicine. This can take many years to develop, and a patent is valid for only 20 years, so a patent extension of up to 5 years is almost routinely granted. After the patent is expired it becomes a generic drug. And another thing, there has to be at least 170000 people suffering from the disease to make it worthwhile.

There is another way. Over 10 years ago my wife got a case of wet macular degeneration in one eye, but it was not the normal type, more like a blood-filled polyp lodging itself under the retina and causing warped vision to say the least.

There was an approved medication at 2000 dollars an injection, the insurance company paid for it, so she tried it, and it did absolutely nothing. But the eye doctor said, he worked with the Amish community, and they are uninsured and cannot afford more than generic drugs. He had had good results for a few to inject Avastin, an approved drug for colon and rectal cancer among other things, and in the amount needed for injection in one eye the cost was only 70 dollars. The trade-off was obvious; 2000 dollars for a drug that the insurance company paid for, but didn’t work versus a 70 dollar medicine that might work, so she let herself be included in the study. And it worked! And the doctor paid for the cost of the medicine himself, he wanted the study to succeed. He was not alone, a few other doctors worked together to find the cure. A few years later the insurance company accepted the treatment, and my wife’s polyp eventually disappeared.

The point of the story? To rely only on approved medications when confronted with cases out of the ordinary, medical science is advancing not only by medical companies seeking new and profitable drugs, or by University research, but by your regular doctor, in consultation with his peers, as they seek to find the best cure for the individual patient.

The Government is always to slow to react. In the case of COVID-19, it works on a time-scale of 3 days, so the best treatment must be administered immediately, not wait for normal approval procedures. So is the case with Hydroxychloroquine, it is approved and generic, no one will make a case study, the side effects are minimal for Lupus or rheumatic patients, of which there are tens of thousands patients and no one has died from it when applied in approved doses, so administer it to anyone that accepts to be in the study now!

 

 

 

 

Teaching online at Penn State University. All real breakthroughs occur at the crossroads of science. This is an opportunity!

I have always loved to teach. I especially enjoyed the person to person contact when you tell of something and get a smile back – they got it. One of the objects of teaching the so called Capstone Course for engineers to be is to teach cross-science, for it is in the intersection between different branches of science, crafts and engineering disciplines that real breakthroughs are made. The object is to revolutionize the students thinking. Up to now they have learnt – and learnt it well – do as your teacher have taught you, and you will get an A. Any deviation is a negative – and bothersome for the teacher. This is an attempt for me to change that – even in an online session, but since there is no direct feedback, it is really an offline instruction. see what you think – did it change your thinking?

 

This tree, the green one was planted upside down. The branches became roots, the roots became branches. It is planted just east of  Penn State Main building. Think root cause analysis.

Chernobyl was a carbon moderated Nuclear reactor. Its failure mode was to go prompt critical and splat in an uncontrolled nuclear reaction. No containment vessel could contain the explosion, so why go to the extra expense of building one? Rely instead on multiple safety circuits. The night crew disabled some safety circuits to capture power on an orderly shutdown. They had never been properly trained.

The cloud. Sweden was the first to report on the accident. Two reactors shut down due to excessive radiation in the air outside the plants.

With a Molten Salt Reactor, accidents like Chernobyl are impossible. The Three Mile Island accident was bad. The Chernobyl disaster was ten million times worse. Ah yes, I remember it well.

One morning at work, after the Three Mile Island incident, but before Chernobyl a fellow co-worker, a Ph.D. Chemist working on an Electron Capture Detector containing a small amount of Nickel 63, came with a surprising question: You know nuclear science, how come the reactors in Chernobyl don’t have a containment vessel? Well – I answered, it is because they are carbon moderated and their failure mode is that they go prompt critical, and no containment vessel in the world can hold it in, so they skip it. He turned away in disgust. A few weeks later my wife’s father died, and we went to Denmark to attend the funeral. The day of the return back to the U.S. we heard that there had been a nuclear incident in Sweden, too much radiation had caused two nuclear power stations to close down. The Chernobyl disaster had happened 26 April 1986, and this was the first time anyone outside of Chernobyl has heard about it, two days later. This was still the Soviet Union, and nothing ever did go wrong in it worthy of reporting.

(But the carbon moderated Uranium reactors are the most efficient in producing Pu-239 the preferred nuclear bomb material.)

This has nothing to do with anything, but Chernobyl can be translated wormwood. It is mentioned in the Bible, Revelation 8: 10-11 “ And the third angel sounded, and there fell a great star from heaven, burning as it were a lamp, and it fell upon the third part of the rivers, and upon the fountains of waters; And the name of the star is called Wormwood: and the third part of the waters became wormwood; and many men died of the waters, because they were made bitter.

Molten Salt Thorium reactors cannot be used to supply bomb material, and they are far safer than even Light water Uranium reactors.

With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.  It began with a magnitude 9.0 earthquake not far from the Fukushima 6 Nuclear reactor complex. The impact was a magnitude 6.8 earthquake and the operators immediately scrammed the safety rods to stop all the reactors. This succeeded! The reactors were designed with earthquakes in mind, and they passed the test. The backup power started up successfully so the cooling pumps could operate. There was one major problem though. The earthquake was so bad that the water in the spent fuel holding tanks splashed out and exposed the spent fuel rods to air making them emit radioactivity into the air.

The water pumps worked for a while, but then came the tsunami. All the reactors were inside a tsunami wall, so far, so good

But the fuel storage tanks for the backup power generators were outside the tsunami wall and were washed away. The batteries were only supposed to last until backup power was established, and with water circulation ended the meltdown started.

This disaster was even bigger than Chernobyl and contamination is still spreading.

In the periodic table, iron has the densest core. Fusion can occur with elements with a lower atomic number than iron, fission can begin with  with elements after lead. What happens in a supernova?

On climate change: Temp records come from boreholes, seashells, and looking at isotope variations among other sources . Of particular interest is the medieval warm period and the little ice age. How did the little ice age happen? There was no decrease in CO2 during that time.

Especially interesting is cosmic radiation that does not come from the sun. It varies a lot, and consists mostly of iron nuclei and comes from distant supernovas. There was two of them, in 1572 and 1604 A.D., both shone brighter in the sky than Venus. Since then we have not seen any supernovas anywhere nearly as bright . Did they trigger the little ice age?

A single iron nucleus can ionize thousands of air molecules, causing condensation and forming the beginning of a cloud.

The iron nuclei enter the earth’s atmosphere with a speed that exceeds the speed of light in atmosphere, causing this eerie blue light. It spreads like a sonic boom.

Cosmic radiation in the form of iron nuclei is the major source of the generation of Carbon 14. When fossil fuel is burned there is very little C14 in the CO2 generated, but if it is burned by digestion of food, by fermentation, by burning wood or by wildfire, it contains the same concentration of C14 as was in the air at the time of the generation of the biomass. Since C14 has a half life of  5700 +- 40 years, we could find out the age of that biomass – or could we?

This is one of my very favorite slides. The best way of finding out how a black body responds is by introducing an impulse and see what happens. In this case the impulse was open air Nuclear bomb tests, performed mostly by United States and the Soviet Union, but all in the Northern Hemisphere. Test stations to see the amount of C14 in the air were set up in Austria and New Zealand. What did we learn? We learn that the air mixes between the Northern and the Southern Hemisphere in about 2 years, and because the half-life of C14 shown here is 12.5 years, not 5700 years, it shows the absorption rate in the oceans. Both of these values would have been difficult if not impossible to find out without open air Nuclear tests, Were they bad? You bet, but since they happened, glean what you can from it. What else did we learn? You can no longer use carbon dating if there is any chance of chance of contamination with newer biomass, or if it is newer than 1955 A.D. Is the specimen appearing to be older or younger?

Since we have shown that the amount of C14 in the air has not been constant over time the age curve has to be calibrated. How do we do that? By using artifacts of known age.

The radioactive fallout decay from a Nuclear test occurs faster than from the Chernobyl disaster. Every nuclear fallout fingerprint is different.

A Liquid Fluoride Thorium based fast breeder nuclear reactor produces much less TRansUranium waste, 0.01% waste products compared to a Uranium-235 fast breeder. The Thorium process has a much higher efficiency of fission than  the Uranium process.

Pu = Plutonium, Am = Americum, Cm = Curium, all TRansUraniums, nasty stuff.

With Thorium based Nuclear power, there are no real problems, with traditional U235 power long tern storage is an immense and urgent problem, and has been since the 1960’s. At that time Sweden had a heavy water  U-238 nuclear power program going, but abandoned it in favor of traditional U-235 power. U.S. promised to provide the material and take care of the reprocessing and final storage of all nuclear waste at cost if Sweden joined the nuclear proliferation treaty. Reprocessing was to be done in Washington State, and one of the final storage sites mentioned was Yucca Mountain in Nevada, having the ideal Geological properties.

Time goes by and in 1982 – Congress passed the Nuclear Waste Policy Act, requiring the establishment of a deep geologic repository for nuclear waste storage and isolation. Yucca Mountain was high on the list out of 9 possible sites.

Time goes by, and Congress is still not able to decide on a solution. Meanwhile, TRU’s from spent and reprocessed fuel is piling up in less than ideal locations. Thorium based nuclear power would go a long way to alleviate this problem.

Radioactive waste from an LFTR (Liquid Fluoride Thorium Reactor)  decays down to background radiation in 300 years instead of a million years for U-235 based reactors. Initially LFTRs produce as much radioactivity as an U-235 based nuclear reactor, since fission converts mass to heat, but the decay products have a much shorter half-life.

And Fukushima is still aglow.

The first thing we must realize is that rare earth metals are not all that rare. They are a thousand times or more abundant than gold or platinum in the earth crust and easy to mine, but a little more difficult to refine. Thorium and Uranium will also be mined at the same time as the rare earth metals since they appear together in the ore.

The U.S. used to have a strategic reserve of rare earth metals, but that was sold off in 1998 as being no longer cost effective or necessary. Two years later the one U.S. rare earth metals mine that used to supply nearly the whole world, the Mountain Pass Mine in California closed down, together with its refining capacity. From that day all rare earth metals were imported. In 2010 it started up again together with the refining capacity but went bankrupt in 2015, closed down the refining but continued selling ore to China. They will start up refining again late 2020. Meanwhile China is slapping on a 25% import tariff on imported ore starting July 1 2020. Rare earth metals may be in short supply for a while.

U.S. used to be the major supplier of rare earth metals, which was fine up to around 1984. Then the U.S. regulators determined that Uranium and Thorium contained in the ore made the ore radioactive, so they decided to make rare earth metal ore subject to nuclear regulations with all what that meant for record keeping and control. This made mining in the U.S. unprofitable so in 2001 the last domestic mine closed down. China had no such scruples, such as human and environmental concerns, so they took over the rare earth metals mining and in 2010 controlled over 95% of the world supply, which was according to their long term plan of controlling the world by 2025.

 

 

Climate change is real and positive for the environment. The real challenge is clean and available water in the 10-40 region.

The safe, clean water essential to all life is rapidly running out in much of the world. Yet the politicians are concentrating on air pollution in the form of CO2 and methane as if a catastrophe is about to hit us. Western US, most of the 10-40 window (the area between the 10th and the 40th latitude), Australia and western South America are using up its safe and drinkable water supply much faster than it is replenished. In addition, what is left is getting polluted.Let me give you an anecdotal example.

More than twenty years ago I was part of a team that made wet processing equipment for making computer chip wafers. It involved cleaning and etching using isopropyl alcohol, hydrocloric, sulphuric, and hydrofluoric acid as well as Ozone, all potent stuff. To collect the used chemicals we had designed a 5-way output port, so the chemicals could be collected separately after use. The equipment was made and shipped off to South Korea. It was assembled in a brand new, state of the art positive air pressure clean room facility. The processing machine was installed by the Koreans, but under the 5-way port was a large funnel, going to the drain and directly out in the sewer.

A couple of years before, in the US we had a valve in a similar machine that sprung a leak, so a small amount of hydrofluoric acid got discharged into the sewage. This poisoned the sewage processing plant, and a large fine was levied. No such worry in Asia. The sewage went directly out in the ocean to be diluted. How could they be persuaded not to dump the alcohol and acid directly into the sewage? There were no environmental regulations prohibiting them from doing so. The only argument that persuaded them was economic. It was cheaper to collect the used alcohol and hydrofluoric acid, clean and reuse it rather than dump it. Unfortunately sulphuric acid and hydrocloric acid was too cheap to buy new, so that was still dumped. This is the mindset of many developing countries.

In China many of these facilities are inland, so large water aquifers get poisoned for centuries to come. These are the people we up to now have entrusted with our future production of just about everything, since they do not have the environmental protection laws they can produce the stuff much cheaper. But it comes at a price. The yellow river now does not anymore reach the ocean for part of the year.

As I have explained in a previous post: https://lenbilen.com/2020/02/28/climate-change-is-real-and-is-caused-by-rising-co2-levels-leading-to-less-extreme-weather-this-is-on-balance-good-for-the-environment/  global warming is real, but it only occurs in temperate regions, and predominantly in the winter. Summertime maxima are actually decreasing slightly, so the net effect of climate change is that it is positive for the environment.

Not so with water pollution. It is a much bigger and dangerous problem, and only by shifting our attention to it and from CO2 can we begin to solve it. To clean up the environment will take a lot of energy, and the only solution I see is switching our electric energy supply away from fossil fuel and to Thorium based nuclear energy. Here are

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

Climate change and our divided nation. Is it a top priority and a threat to mankind as most Democrats believe, or is it not much to worry about, and maybe even beneficial, as most Republicans believe?

We are a divided nation indeed. In no other area is this more apparent than in our attitudes towards Climate Change. Democrats regard is as a top priority more and more, while Republicans maintain it is not much to worry about, way down in the importance of things that need fixing. The PEW research center shows the growing discrepancy:

Republicans live in over 90% of the area of the United States, Democrats are concentrated to urban areas, and in areas of majority black or Hispanic population.

Most of the Democrats live concentrated in Urban areas, and they have already experienced climate change! The Urban Heat Island effect can be as high as 7 degree Celsius on a dog day in August, with humidity to boot!

Most Republicans on the other hand live in rural areas where there are no heat islands. If anything, they are realizing that the winters are less severe, and the summers are not getting hotter. They see good in the climate change, such as we can now feed another 2 billion people on earth, thanks to the fertilizing effect of increasing CO2.

I have put in the reasons why Rising CO2 levels may actually be on balance beneficial : https://lenbilen.com/2020/02/28/climate-change-is-real-and-is-caused-by-rising-co2-levels-leading-to-less-extreme-weather-this-is-on-balance-good-for-the-environment/

Now for the question: Should we expand the burning of fossil fuels?

Even though increasing levels of CO2 is beneficial for the climate we should not expand, but reduce the mining, drilling and fracking of fossil fuels. There are better ways of supply the energy needs of the future. We should leave some of the fossil fuels for our great grandchildren not yet born.

More solar panel farms. This I see as a niche market. China still control 90% of the rare earth metal mining we should only use them in urban areas to lessen the need for an expanded grid. One area that is ideal for more solar panels is to put them up as roofs in open parking lots, especially those that are covered with black asphalt. Parked cars will be cooler and dryer, and it will lessen the urban heat effect.

More wind turbine farms: I love birds, especially large birds such as eagles and raptors. The eagles like to build their aeries on top of the wind turbines, and – you guessed it – they get whacked by the rotor blades. During the Obama administration they upped the yearly allowable kill of bald eagles from from 1100 to 4200. If you kill a golden eagle there is still a 250000 dollar fine. If we increase the number of wind-farms we could run out of large birds.

Hydro-electric power: This is mostly already utilized to capacity. One exception is the river Congo in Africa, still waiting to produce electric power.

Nuclear plants: This is the only realistic solution, but not the common U235 power plants. No, we need a Manhattan-like project to fast track Molten Salt Thorium Nuclear reactors. Here are 25 r3qsons why this is the only realistic solution until we master fusion power, which is always a couple of decades away from commercialization.

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

 

Climate change is real and is caused by rising CO2 levels, leading to less extreme weather. This is on balance good for the environment!

We have experienced a 50% increase in CO2 levels since the beginning of industrialization. In the last 30 years the level has risen 17%, from about 350 ppm to nearly 410 ppm. Is this good or bad for the climate?

The traditional way to approach the problem of guessing what effect of rising CO2 levels has on the climate is by creating climate models. Thy have recently been adjusted, and they suddenly show a much higher rate of future temperature increase, in this case what is supposed to happen to global temperatures for a doubling of CO2 from pre-industrial times, from 270ppm to 540ppm.

https://lenbilen.files.wordpress.com/2020/02/screenshot_2020-02-07-climate-models-are-running-red-hot-and-scientists-done28099t-know-why1.png

The first thing that strikes you is the great discrepancies between the models. The Russian, Chinese and Norwegian models show a much slower temperature rise than  rest of the models. Why is that?

There are two ways to approach this problem. The climate models make certain assumptions about the behavior of the changing atmosphere, and based on these assumptions model future temperature changes. This is the approach from IPCC for the last 32 years. These models are failing miserably when compared to actual temperature changes. This is the traditional way.

The other way i to observe what is actually happening to our temperature over time as the CO2 increases. We have over 50 years of excellent global temperature data, so with these we can see where, when and by how much the earth has warmed.

The most drastic temperature rise on earth has been in the Arctic above the 80th latitude. In the winter of 2018 it was 8C above the 50 year average. See charts from the Danish Meteorological Institute:

Note, there is no increase at all in the summer temperatures!

The fall temperature saw an increase of 5C and the spring temperature saw an increase of about 2.5C.

The 2020 winter has so far seen an about 5c increase Source: DMI.

This 8C ( or 5C) rise in winter temperatures is significant, most would even say alarming, but my response is, why is that?

To get the answer we must study molecular absorption spectroscopy and explain a couple of facts for the 97% of all scientists who have not studied molecular spectroscopy. IPCC and most scientists claim that the greenhouse effect is dependent on the gases that are in the atmosphere, and their combined effect is additive according to a logarithmic formula. This is true up to a certain point, but it is not possible to absorb more than 100% of all the energy available in a certain frequency band! For example: If water vapor absorbs 50% of all incoming energy in a certain band, and CO2 absorbs another 90% of the energy in the same band, the result is that 95% is absorbed, (90% + 50% * (100% – 90%)),  not 140%, (90% + 50%).

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency ranges they absorb.

To better understand the importance of frequency spectra this we will look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

The red area represents the observed amount of solar radiation that reaches the earth’s surface. the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is re-emitted. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 microns. Of them the 2.7 and 4.3 micron bands absorb where there is little black body radiation, the only band that counts is at 15 microns, and that is in a band where the black body radiation has its maximum. However it is also in a band where water vapor also absorb, not as much as CO2,only about 20% to 70% as much. Water vapor or absolute humidity is highly dependent on the temperature of the air, so at 30C there may be 50 times as much water vapor, at 0C there may be ten times as much water vapor, and at -25C there may be more CO2 than water vapor. At those low temperatures the gases are mostly additive. In the tropics with fifty times more water vapor than CO2, increased CO2 has no influence on the temperature whatsoever. Temperature charts confirm this assertion:

The temperature in the tropics displays no trend whatsoever. It follows the temperature of the oceans, rises in an el niño and falls in a la niña. We are now in the end of an el niño, soon to be followed by a rather strong la niña.The temperature in the southern hemisphere shows no trend. In the northern temperate region there is a slight increase, but the great increase is occurring in the Arctic. There is no increase in the Antarctic yet even though the increase in CO2 is the same in the Antarctic as it is in the Arctic and the winter temperature in the Antarctic is even lower than in the Arctic. So CO2 increase cannot be the sole answer to the winter temperature increase in the Arctic.

A few days ago there was a storm of historic magnitude, filled with moisture going up from the Mexican Gulf through the Atlantic and really sacked Scotland and Norway. The weather warnings called for severe floods and hurricane-like winds:

What happened to the temperature when the storm arrived?

The Arctic temperature above the 80th latitude rose about 12C, from about -30C to about -18C, and most of the moisture snowed out. What happened to the ice cover when the storm arrived? Let’s see the most recent Arctic ice cover.

As the storm arrives, some of the ice breaks up, but at the end of the storm it bounces back, helped with all the snow that just fell. After the snowfall ends the ice formed easily breaks up again.

Is the snow cover increasing in the Arctic? Let us see what the snow statistics show. These are from the Rutgers snow lab.

The fall snow extent is increasing by more than 2 percent per year.

The winter snowfall has also increased but only by 0.04 percent per year.

The snow covers all of Russia, Northern China, Mongolia, Tibet, Kashmir and northern Pakistan, Northern Afghanistan, Northern Iran, Turkey, Part of Eastern Europe, Scandinavia, Canada, Alaska, Greenland and parts of Western and Northern United States.

In the spring on the other hand the snow pack is melting faster, about 1.6 percent less snow per year. One of the major reasons for an earlier snow-melt is that the air is getting dirtier, especially over China, and to some extent Russia. The soot from burning coal and mining and manufacturing changes the albedo of the snow. The soot is visible on old snow all the way up to the North Pole. The other reason is that the poles are getting warmer. In the fall and winter it is mostly due to increased snowfall, but in the spring, as soon as the temperature rises over the freezing point, melting occurs.

Moving down to the continental U.S. there are even more good news.

The data presented in the next six graphs were extracted from the data available at the NOAA National Data Center Climate Data Online (NNDC CDO) website.

Yes, rain (and snow) are increasing, but it is also raining slightly more often and regularly, so the net result is a slight decrease in flooding.

Of course, this could change in the future, and we need to watch the rain patterns, as they are constantly changing. Building more levees is not always the answer, since this will increase the risk for flooding in other places. It may be necessary to let certain areas, mostly farmland and woodland be flooded from time to time.

The Palmer Drought Severity Index (PDSI) uses readily available temperature and precipitation data to estimate relative dryness. It is a standardized index that generally spans -10 (dry) to +10 (wet). The chart shows Continental U.S. is getting wetter, about 0.01 PDSI index per year with the lows trend is getting wetter the fastest. This is good news.

The temperature extremes keep narrowing, the maximum temperatures decrease by 0.033 degree F/decade, but the minimum temperatures increase by 0.309 degree F/decade. This is good, since tornadoes are a result of extreme temperature differences, most often associated with cold fronts.

 The Continental U.S. has not had an EF5 tornado (the most severe) since 2013. Let us hope this trend continues.

Contrary to popular belief, hurricanes making landfall on the U.S. mainland are decreasing slightly, especially major hurricanes.

Taking a closer look at the seasonal temperature trends  we can see that the winter aveerage temperatures are rising by about 0.3F per decade but the summer temperatures rise only about one seventh as much, (0.04F/decade)  .

These are the average temperatures. The minimum average temperatures rise in all seasons, but mostly in the winter,

The maximum temperatures barely budge. They rise in the winter and decrease ever so slightly in the summer.

Watching the warming of the poles, and even the continental U.S., far from being an impending end of mankind as we know it, may even be beneficial. Warmer poles in the winter means less temperature gradient between the poles and the tropics, leading to less severe storms. They will still be there, but less severe.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, which is accomplished with the fertilizer effect of CO2, the earth can now keep another 2 billion people from starvation, not to mention what it does to plants and wildlife.

Having said that, I am still a conservationist. Coal, oil and gas will run out at some time, and I for one would like to save some for our great grandchildren, not yet born. In addition I would like to minimize the need for mining, which can be quite destructive. We have immense environmental problems, like water pollution, deforestation, intoxication of the soil, over-fertilization with nitrogen, real air pollutants, such as Sulfur compounds and soot, just to name a few. They have one thing in common: It takes lots of energy to do the cleanup.

The best solution is to switch most electricity generation to Thorium molten salt nuclear power. There are multiple reasons why this should be done as a priority by streamlining regulation and facilitate competition in development of the best solutions to the energy problems.

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

 

Obamacare made sharing of data between federal departments, including citizenship question possible. A Limerick.

Since the legal delays made it impossible to put the question of citizenship back on the 2020 census forms, where it had been from the 1800’s to 2000, President Trump issued an executive order directing the Commerce Department to obtain citizenship data through means other than the census. That includes documents from the Department of Homeland Security, which houses citizenship and asylum services, and the Social Security Administration.
The order was signed and released to reporters late Thursday night. The Justice Department notified federal district judges of the administration’s decision.
Sharing of data between federal agencies has always been a sticky point, since federal agencies jealously protect their turf. The introduction of Obamacare changed all that, so the legal hindrances were removed for sharing data.

 

Obamacare did blaze the trail

of sharing of data, no fail.

Who’s a citizen now

can be found out somehow.

It’s better in every detail.

We all remember the introduction of the Obamacare website. It will stand out as an example for all time how not to design a website. The cost was estimated to be 95 million dollars to design and implement. The final cost was more than 2.2 Billion dollars, maybe an all time record for a website. There were many reasons for this overrun, one of which was it had to import a number of data bases and read the data securely. One of the features of Obamacare was that you were not eligible to enroll if you was not a citizen, so they needed full access to all that data. If the need for sharing had arisen first now, imagine the legal delays!

Since the citizenship question on the census form was voluntary, this is a much better way to obtain somewhat accurate data (the drug runners and child traffickers and sex slaves will never be counted accurately anyway)

One final question: Who took the citizen question off the 2010 long form census and why?

Here is the 2000 long form.

The need to develop Thorium based Nuclear Energy as the major electric energy supply. 14. No need for evacuation zones, can be placed near urban areas.

No need for evacuation zones, can be placed near urban areas. Molten Salt Thorium reactors operate at atmospheric pressure and have a very high negative temperature coefficient, so there is no risk for a boil-over. They are easily made earthquake-safe and no pressure vessel is needed. This will greatly simplify the approval process, no need for elaborate evacuation plans have to be developed. Since the Three Mile Island accident there was a thirty year gap in approvals for new nuclear plants. The “not in my backyard ” mentality reigned supreme, and delay and denial was the rule of the years. But the lawyers still got their share, leading to escalating cost for new nuclear power. In the early days of nuclear power France took the approach of building some of their nuclear plants near the Belgian and German border, so they only had to develop half of an  evacuation plan, leaving the other half to their understanding neighbors. It also leads to placing the nuclear plants where there is the least resistance, not where they are needed the most, adding to the strain on the electric grid.

China is seriously considering restricting rare earth exports to the US. Why is that important?

One week ago, President Xi and Vice Premier Liu He, China’s top trade negotiator, visited a rare earth metals mine in Jiangxi province. This has led to the rumor that China is seriously considering restricting rare earth exports to the US. China may also take other countermeasures in the future. The trade negotiations between U.S. and China got a lot more serious. It extends far beyond tariffs and intellectual property, it now involves strategic materials.

The first thing we must realize is that rare earth metals are not all that rare. They are a thousand times or more abundant than gold or platinum in the earth crust and easy to mine, but a little more difficult to refine. Thorium and Uranium will  also be mined at the same time as the rare earth metals since they appear together in the ore.

Related image

U.S. used to be the major supplier of rare earth metals, which was fine up to around 1984. Then the U.S. regulators determined that Uranium and Thorium contained in the ore made the ore radioactive, so they decided to make rare earth metal ore subject to nuclear regulations with all what that meant for record keeping and control. This made mining in the U.S. unprofitable so in 2001 the last domestic mine closed down. China had no such scruples, such as human and environmental concerns, so they took over the rare earth metals mining and in 2010 controlled over 95% of the world supply, which was according to their long term plan of controlling the world by 2025.

Rare Earth Element Production

The U.S. used to have a strategic reserve of rare earth metals, but that was sold off in 1998 as being no longer cost effective or necessary. Two years later the one U.S. rare earth metals mine that used to supply nearly the whole world, the Mountain Pass Mine in California closed down, together with its refining capacity. From that day all rare earth metals were imported. In 2010 it started up again together with the refining capacity but went bankrupt in 2015, closed down the refining but continued selling ore to China. They just announced they will start up refining again late 2020. Meanwhile China is slapping on a 25% import tariff on imported ore starting July 1. Rare earth metals may be in short supply for a while.

So, why is this important? Just take a look at all the uses for rare earth metals. The most sought after pays all the cost of mining and refining, and the rest are readily available at nominal cost.

The Chinese almost got away with it, and that is but one reason the trade negotiations are so complicated and hard fought, but necessary. Donald Trump fights for reciprocity and fair competition.