CO2 concentration has increased 50% since pre-industrial times causing climate change. Thorium Nuclear Power is the answer. A Limerick.

As CO2 warms up the poles

burned oil, gas and coal play their roles.

CO2 is still good;

makes plants green, grows more food,

and clouds are the climate controls.

We live in interesting times, the CO2 concentration has increased 50% since the beginning of industrialization. In the last 30 years the level has risen 17%, from about 350 ppm to nearly 410 ppm. This is what scares people. Is is time to panic and stop carbon emissions altogether as Greta Thunberg has suggested?As if on cue the climate models have been adjusted, and they suddenly show a much higher rate of temperature increase, in this case what is supposed to happen to global temperatures for a doubling of CO2 from pre-industrial times, from 270ppm to 540ppm.

There are two ways to approach this problem. The models make certain assumptions about the behavior of the changing atmosphere and model future temperature changes. This is the approach taken by IPCC for the last 32 years. These models are all failing miserably when compared to actual temperature changes.

The other way i to observe what is actually happening to our temperature over time as the CO2 increases. We have 50 years of excellent global temperature data, so with these we can see where, when and by how much the earth has warmed.

The most drastic temperature rise on earth has been in the Arctic above the 80th latitude. In the winter of 2019 it was 4C above the 50 year average. See charts from the Danish Meteorological Institute:

Note, there is no increase at all in the summer temperatures!

The fall temperature saw an increase of 4C and the spring temperature saw an increase of about 2.5C.

Notice: In this chart the there is no recorded summer temperature increase at all, but the onset of fall freezing was delayed by 3 weeks.

The 5 thru 8C winter rise of temperature is significant, most would even say alarming, but my response is, why is that?

To get the answer we must study molecular absorption spectroscopy and explain a couple of facts for the 97% of all scientists who have not studied molecular spectroscopy. IPCC and most scientists claim that the greenhouse effect is dependent on the gases that are in the atmosphere, and their combined effect is additive according to a logarithmic formula. This is true up to a certain point, but it is not possible to absorb more than 100% of all the energy available in a certain frequency band! For example: If water vapor absorbs 50% of all incoming energy in a certain band, and CO2 absorbs another 90% of the energy in the same band, the result is that 95% is absorbed, (90% + 50% * (100% – 90%)),  not 140%, (90% + 50%).

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency range s they absorb.

For this we will have to look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

The red area represents the observed amount of solar radiation that reaches the earth’s surface, the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is re-emitted. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us  now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 microns. Of them the 2.7 and 4.3 micron bands absorb where there is little black body radiation, the only band that is of interest is at 15 microns, and that is in a band where the black body radiation has its maximum. However it is also in a band where water vapor also absorb, not as much as CO2,only about 20% to 70% as much. Water vapor or absolute humidity is highly dependent on the temperature of the air, so at 30C there may be 50 times as much water vapor, at 0C there may be ten times as much water vapor, and at -25C there may be more CO2 than water vapor. At those low temperatures the gases are mostly additive. In the tropics with fifty times more water vapor than CO2, increased CO2 has no influence on the temperature whatsoever. Temperature charts confirm this assertion:

Here the temperature in the tropics displays no trend whatsoever. It follows the temperature of the oceans, goes up in an El Niño and down in a La Niña. The temperature in the southern hemisphere shows no trend. In the northern temperate region there is a slight increase, but the great increase is occurring in the Arctic. There is no increase in the Antarctic yet even though the increase in CO2 is greater in the Antarctic and the winter temperature in the Antarctic is even lower than in the Arctic. So CO2 increase cannot be the sole answer to the winter temperature increase in the Arctic.

There is an obvious answer. When temperatures increase the air can contain more moisture and will transport more moisture from the tropics all the way to the arctic, where it falls as snow. Is the snow increasing in the Northern Hemisphere?

Let us see what the snow statistics show. These are from the Rutgers’ snow lab.

The fall snow extent is increasing, and has increased by more than 2 percent per year.

The winter snowfall has also increased but only by 0.04 percent per year. The snow covers all of Russia, Northern China, Mongolia, Tibet, Kashmir and northern Pakistan, Northern Afghanistan, Northern Iran, Turkey, Part of Eastern Europe, Scandinavia, Canada, Alaska, Greenland and part of Western and Northern United States.

In the spring on the other hand the snow pack is melting faster, about 1.6 percent less snow per year. One of the major reasons for an earlier snow-melt is that the air is getting dirtier, especially over China, and to some extent Russia. The soot from burning coal and mining and manufacturing changes the albedo of the snow. The soot is visible on old snow all the way up to the North Pole. The other reason is that the poles are getting warmer. In the fall and winter it is mostly due to increased snowfall, but in the spring, as soon as the temperature rises over the freezing point, melting occurs.

So the warming of the poles, far from being an impending end of mankind as we know it, may even be beneficial. Warmer poles in the winter means less temperature gradient between the poles and the tropics, leading to less severe storms. They will still be there, but less severe.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, accomplished with only the fertilizing effect of CO2, the earth can now keep another 2 billion people from starvation, not to mention what it does to increase wild plants and wildlife. More vegetation also helps to combat erosion.

Having said that, I am still a conservationist. Coal, oil and gas will run out at some time, and I for one would like to save some for future generations, not yet born. In addition I would like to minimize the need for mining, which can be quite destructive to the environment.

The best solution is to switch most electricity generation to Thorium molten salt nuclear power. There are many reasons why this should be done as a priority.

Here are some of them:

The case for Thorium. 1. A million year supply of Thorium available worldwide.

The case for Thorium. 2. Thorium already mined, ready to be extracted.

The case for Thorium. 3. Thorium based nuclear power produces 0.012 percent as much TRansUranium waste products as traditional nuclear power.

The case for Thorium. 4. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.

The case for Thorium. 5. Thorium nuclear power is only realistic solution to power space colonies.

The case for Thorium. 6. Radioactive waste from an Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick.

The case for Thorium. 7. Thorium based nuclear power is not suited for making nuclear bombs.

The case tor Thorium. 8. Produces isotopes that helps treat and maybe cure certain cancers.

The case for Thorium. 9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.

The case for Thorium. 10. Molten Salt Liquid Fluoride Thorium Reactors cannot have a meltdown, the fuel is already molten, and it is a continuous process. No need for refueling shutdowns.

The case for Thorium. 11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

The case for Thorium 13. Virtually no spent fuel problem, very little on site storage or transport.

The case for Thorium. 14. Liquid Fluoride Thorium Nuclear reactors scale beautifully from small portable generators to full size power plants.

The case for Thorium. 15. No need for evacuation zones, Liquid Fuel Thorium Reactors can be placed near urban areas.

The case for Thorium. 16. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

The case for Thorium. 17. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

The case for Thorium. 18. Russia has an active Thorium program.

The case for Thorium. 19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

The case for Thorium 20. China is having a massive Thorium program.

The case for Thorium. 21. United States used to be the leader in Thorium usage. What happened?

The case for Thorium. 22. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

The case for Thorium. 23. With a Molten Salt Reactor, accidents like Chernobyl are impossible.

The case for Thorium. 24. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

The case for Thorium. 25. Will produce electrical energy at about 4 cents per kWh.

The case for Thorium. 26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles.

The case for Thorium. 27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed.

The case for Thorium 28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

Published by

lenbilen

Retired engineer, graduated from Chalmers Technical University a long time ago with a degree in Technical Physics. Career in Aerospace, Analytical Chemistry, computer chip manufacturing and finally adjunct faculty at Pennsylvania State University, taught just one course in Computer Engineering, the Capstone Course.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Post navigation

Climate change is real and is caused by rising CO2 levels, leading to less extreme weather. This is on balance good for the environment!

We have experienced a 50% increase in CO2 levels since the beginning of industrialization. In the last 30 years the level has risen 17%, from about 350 ppm to nearly 410 ppm. Is this good or bad for the climate?

The traditional way to approach the problem of guessing what effect of rising CO2 levels has on the climate is by creating climate models. Thy have recently been adjusted, and they suddenly show a much higher rate of future temperature increase, in this case what is supposed to happen to global temperatures for a doubling of CO2 from pre-industrial times, from 270ppm to 540ppm.

https://lenbilen.files.wordpress.com/2020/02/screenshot_2020-02-07-climate-models-are-running-red-hot-and-scientists-done28099t-know-why1.png

The first thing that strikes you is the great discrepancies between the models. The Russian, Chinese and Norwegian models show a much slower temperature rise than  rest of the models. Why is that?

There are two ways to approach this problem. The climate models make certain assumptions about the behavior of the changing atmosphere, and based on these assumptions model future temperature changes. This is the approach from IPCC for the last 32 years. These models are failing miserably when compared to actual temperature changes. This is the traditional way.

The other way i to observe what is actually happening to our temperature over time as the CO2 increases. We have over 50 years of excellent global temperature data, so with these we can see where, when and by how much the earth has warmed.

The most drastic temperature rise on earth has been in the Arctic above the 80th latitude. In the winter of 2018 it was 8C above the 50 year average. See charts from the Danish Meteorological Institute:

Note, there is no increase at all in the summer temperatures!

The fall temperature saw an increase of 5C and the spring temperature saw an increase of about 2.5C.

The 2020 winter has so far seen an about 5c increase Source: DMI.

This 8C ( or 5C) rise in winter temperatures is significant, most would even say alarming, but my response is, why is that?

To get the answer we must study molecular absorption spectroscopy and explain a couple of facts for the 97% of all scientists who have not studied molecular spectroscopy. IPCC and most scientists claim that the greenhouse effect is dependent on the gases that are in the atmosphere, and their combined effect is additive according to a logarithmic formula. This is true up to a certain point, but it is not possible to absorb more than 100% of all the energy available in a certain frequency band! For example: If water vapor absorbs 50% of all incoming energy in a certain band, and CO2 absorbs another 90% of the energy in the same band, the result is that 95% is absorbed, (90% + 50% * (100% – 90%)),  not 140%, (90% + 50%).

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency ranges they absorb.

To better understand the importance of frequency spectra this we will look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

The red area represents the observed amount of solar radiation that reaches the earth’s surface. the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is re-emitted. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 microns. Of them the 2.7 and 4.3 micron bands absorb where there is little black body radiation, the only band that counts is at 15 microns, and that is in a band where the black body radiation has its maximum. However it is also in a band where water vapor also absorb, not as much as CO2,only about 20% to 70% as much. Water vapor or absolute humidity is highly dependent on the temperature of the air, so at 30C there may be 50 times as much water vapor, at 0C there may be ten times as much water vapor, and at -25C there may be more CO2 than water vapor. At those low temperatures the gases are mostly additive. In the tropics with fifty times more water vapor than CO2, increased CO2 has no influence on the temperature whatsoever. Temperature charts confirm this assertion:

The temperature in the tropics displays no trend whatsoever. It follows the temperature of the oceans, rises in an el niño and falls in a la niña. We are now in the end of an el niño, soon to be followed by a rather strong la niña.The temperature in the southern hemisphere shows no trend. In the northern temperate region there is a slight increase, but the great increase is occurring in the Arctic. There is no increase in the Antarctic yet even though the increase in CO2 is the same in the Antarctic as it is in the Arctic and the winter temperature in the Antarctic is even lower than in the Arctic. So CO2 increase cannot be the sole answer to the winter temperature increase in the Arctic.

A few days ago there was a storm of historic magnitude, filled with moisture going up from the Mexican Gulf through the Atlantic and really sacked Scotland and Norway. The weather warnings called for severe floods and hurricane-like winds:

What happened to the temperature when the storm arrived?

The Arctic temperature above the 80th latitude rose about 12C, from about -30C to about -18C, and most of the moisture snowed out. What happened to the ice cover when the storm arrived? Let’s see the most recent Arctic ice cover.

As the storm arrives, some of the ice breaks up, but at the end of the storm it bounces back, helped with all the snow that just fell. After the snowfall ends the ice formed easily breaks up again.

Is the snow cover increasing in the Arctic? Let us see what the snow statistics show. These are from the Rutgers snow lab.

The fall snow extent is increasing by more than 2 percent per year.

The winter snowfall has also increased but only by 0.04 percent per year.

The snow covers all of Russia, Northern China, Mongolia, Tibet, Kashmir and northern Pakistan, Northern Afghanistan, Northern Iran, Turkey, Part of Eastern Europe, Scandinavia, Canada, Alaska, Greenland and parts of Western and Northern United States.

In the spring on the other hand the snow pack is melting faster, about 1.6 percent less snow per year. One of the major reasons for an earlier snow-melt is that the air is getting dirtier, especially over China, and to some extent Russia. The soot from burning coal and mining and manufacturing changes the albedo of the snow. The soot is visible on old snow all the way up to the North Pole. The other reason is that the poles are getting warmer. In the fall and winter it is mostly due to increased snowfall, but in the spring, as soon as the temperature rises over the freezing point, melting occurs.

Moving down to the continental U.S. there are even more good news.

The data presented in the next six graphs were extracted from the data available at the NOAA National Data Center Climate Data Online (NNDC CDO) website.

Yes, rain (and snow) are increasing, but it is also raining slightly more often and regularly, so the net result is a slight decrease in flooding.

Of course, this could change in the future, and we need to watch the rain patterns, as they are constantly changing. Building more levees is not always the answer, since this will increase the risk for flooding in other places. It may be necessary to let certain areas, mostly farmland and woodland be flooded from time to time.

The Palmer Drought Severity Index (PDSI) uses readily available temperature and precipitation data to estimate relative dryness. It is a standardized index that generally spans -10 (dry) to +10 (wet). The chart shows Continental U.S. is getting wetter, about 0.01 PDSI index per year with the lows trend is getting wetter the fastest. This is good news.

The temperature extremes keep narrowing, the maximum temperatures decrease by 0.033 degree F/decade, but the minimum temperatures increase by 0.309 degree F/decade. This is good, since tornadoes are a result of extreme temperature differences, most often associated with cold fronts.

 The Continental U.S. has not had an EF5 tornado (the most severe) since 2013. Let us hope this trend continues.

Contrary to popular belief, hurricanes making landfall on the U.S. mainland are decreasing slightly, especially major hurricanes.

Taking a closer look at the seasonal temperature trends  we can see that the winter aveerage temperatures are rising by about 0.3F per decade but the summer temperatures rise only about one seventh as much, (0.04F/decade)  .

These are the average temperatures. The minimum average temperatures rise in all seasons, but mostly in the winter,

The maximum temperatures barely budge. They rise in the winter and decrease ever so slightly in the summer.

Watching the warming of the poles, and even the continental U.S., far from being an impending end of mankind as we know it, may even be beneficial. Warmer poles in the winter means less temperature gradient between the poles and the tropics, leading to less severe storms. They will still be there, but less severe.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, which is accomplished with the fertilizer effect of CO2, the earth can now keep another 2 billion people from starvation, not to mention what it does to plants and wildlife.

Having said that, I am still a conservationist. Coal, oil and gas will run out at some time, and I for one would like to save some for our great grandchildren, not yet born. In addition I would like to minimize the need for mining, which can be quite destructive. We have immense environmental problems, like water pollution, deforestation, intoxication of the soil, over-fertilization with nitrogen, real air pollutants, such as Sulfur compounds and soot, just to name a few. They have one thing in common: It takes lots of energy to do the cleanup.

The best solution is to switch most electricity generation to Thorium molten salt nuclear power. There are multiple reasons why this should be done as a priority by streamlining regulation and facilitate competition in development of the best solutions to the energy problems.

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

 

Climate Catastrophe? No, but an environmental challenge. A Limerick.

Is climate change all in the cloud?

Acknowledge it is not allowed.

Settled science, they say.

Buckle up and portray

disaster! Close rank, join the crowd.

I believe in climate change. It is obvious by observing how the climate has changed over the years. Here is a chart of global temperature and CO2 for the last 600 million years.

The chart is smoothed over millions of years, but it shows that the global average tempera ture stabilizes at 22C regardless of CO2 levels, and there is precious little correlation between temperature and CO2 level. Taking a look at the last 450,000 years it shows an interesting pattern:

It shows that more than 90 percent of the time the earth has been colder than today, most of that time in a series of ice ages, interrupted with inter-glacial periods of between 5,000 and 20,000 years.  This inter-glacial period is of interest, since it points to our future – another ice age, the question is: When it will start? According to the Milanković cycles we are still in the moderate temperatures sweetspot, and it will last for another few thousand years, but the trend is down, tne next ice age is inevitable. In fact, except for the little ice age and the time between the Roman warm period and the medieval warm period,  the global temperatures have been higher than now for the last ten thousand years. This shows the temperature from the Greenland ice cores for the last 10000 years:

Greenlandgisp-last-10000-new

All of these changes in climate occurred with a relative constant CO2 level of about 260 ppm!

This time is different; CO2 levels are now over 400 ppm, rising about 2 ppm per year with no end in sight. The question is: Is this increase good or bad? If it is bad, how bad is it going to be?

To answer this question the world spends over 400 billion dollars a year in climate research and are starting to spend much more in climate remediation. Over 30 nations are making climate models trying to predict future temperature trends. Of the models so far all but one fail miserably when compared to what actually is happening. The sole exception is the Russian model which tries to fit their  model to past temperature records rather than postulate that response from CO2 and water vapor are always additive.

There is a better, far simpler way to predict future temperature trends. The reason CO2 and water vapor are not always additive is because water vapor is a condensing gas, sometimes forming clouds, which drastically alter the temperature of the surface. Clouds forming at day reflects a large portion of the sunlight back into space, clouds at night keep the heat in.

Willis Eschenbach has made en excellent analysis of 19 years of data from CERES (Clouds and the Earth’s Radiant Energy System from NASA). He compensates for the effect of Advection (horizontal heat transfer of energy from one place on earth to another.) The results are startling:

The 3.7 W/m2 is the expected increase of heat retention for a doubling of CO2 as per IPCC  (the U.N  Intergovernmental Panel on Climate Change). A similar result is obtained if one is to include data from HadCRUT (Temperature data from the Hadley Centre of the UK Met Office)

This agrees very well with my own, much coarser examination of data, but should include that the expected temperature increase observed for a doubling of CO2 is by no means evenly distributed. In addition, if temperature rises 0,39C there will be  about 2.6 % more water vapor in the air which would rise temperature another 0.35 C. This too is not evenly distributed. Here are the expected result:

In the tropical doldrums there will be no change at all, the water vapor is all dominant and thunderstorms keep the average temperature constant.

In the 10-40 latitude there will be an increase, but increased clouds will moderate the increase except in the most arid deserts that will experience around a 0.9 C increase.

The temperate regions will experience about a 0.4 C increase in the wet areas, and about a 0.6 C in the arid parts.

Most of the increase will be experienced around the poles, with minimum temperatures rising five to ten degrees, but maximum temperatures staying about the same. We are seeing this increase in the Arctic, and the rise is nearly all due to rising winter minimum temperatures.

Source: Danish Meteorology Institute

Why is that? With on the average 2.6 % increase in water vapor there will be an increase in the rainfall,  about 2.6% on average, but since there is no change in the tropics it will be concentrated at the higher latitudes, especially around the poles where it will manifest itself as more snow, and that is the main reason for the increased minimum temperatures. Notice there has been no increase in summer temperatures!

So, how bad is it going to get if nothing is done to stop the increase in CO2?

The temperature difference between poles and equator will be less, which means:

Fewer and less severe hurricanes, less severe tornadoes, less severe winter storms, less droughts.

But there will be about 2% more average cloud cover, more rain and more flooding.

So, with an 0.4C average temperature we will not even be back to the medieval warm period, much less the Roman warm period, not to speak of the Minoan warm period.

The sinking eastern seaboard is a problem that has very little to do with ocean rising, and all to do with tectonic plates movements, which we will have to accept.

Will anything else good come out of this climate change?

Yes, indeed. With a doubling of CO2 there will be a corresponding response from plant life increasing biological productivity 30 to 60%. It is not linear, and above 800 ppm it tapers of for most plant species. But we will be able to feed at least another 3 billion people and keep them from hunger, but also much cattle and wild animals, (yes that includes flies and gnats, but I digress)

https://lenbilen.files.wordpress.com/2016/11/increase.png?w=660

This picture gives us hope for the future. Notice the most significant increase was in Sub-Saharan Africa, western United States, western Australia and western India. These are the areas that need more rain the most!

If increasing CO2 concentration is not the problem, then what is? Let us take a look at the sources  from which U.S. generates electrical energy.

Image result for us electricity generation by source

We live in challenging times indeed, with enormous environmental challenges. It takes a lot of energy to clean up the mess we have generated over the ages. It would be a shame to use up our remaining coal, oil and gas to produce the electricity needed to clean up. Oil coal and gas will eventually be depleted and we need to save some for our great grandchildren so they can enjoy flying like we have become accustomed to. Like the famous conservationist Sarah Palin once said: “for when it’s gone, it’s gone.

Solar generation is about 4 times more expensive (without subsidies) to produce energy than coal and gas, but has important niche applications, such as on roofs for backup in case of short grid failures and for peak power assist. The Amish people have given many practical applications on how to live off the grid.

Wind power is cheaper when the wind blows, but the full generation capacity has to be there even when the wind doesn’t blow, so the only gain from wind power is to lessen the mining or extraction of carbon. In addition, wind power kills birds, the free yearly quota of allowable Bald Eagle kills was upped from 1200 to 4200 during the Obama administration. Golden Eagles and a few other rare birds have a quarter of a million dollar fine associated with their kills. If wind power is increased without finding a solution to the bird kills, whole species may become extinct.

Hydroelectric power is for all practical purpose maxed out, except one large untapped resource; the Kongo river in Africa. Some hydro electrical project do more harm than good, such as the Aswan Dam in Egypt, and some are waiting for the next big earthquake, such as the Three Gorges Dam in China.

Geothermal power is good but difficult and risky to utilize in geologically unstable areas.

Biomass should never be burned for electricity production but be used for soil regeneration to combat erosion. Only polluted biomass such as medical waste and plastics should be incinerated at high temperature, complete with scrubbers to eliminate poisonous gases.

All necessary cleanup and recycling consume a lot of energy, and it has to be generated somehow. We would like save some Coal, Natural Gas and Petroleum for our great grandchildren. This leaves us only

Nuclear power.  After a nearly thirty year hiatus in building new nuclear power plants they are slowly being built again. The permit process is fraught with citizen opposition (NIMBY), very strict bureaucratic delay, first by the Three Mile Island incident, then by the Chernobyl disaster/unintended sabotage, and finally by the Fukushima catastrophe. In addition conventional nuclear power produces large amounts of transuranium waste products that has to be stored for a million years. The Obama administration ended reprocessing of spent fuel rods, so not only must the transuranium products be stored, but also some unused U235. This makes conventional nuclear power using enriched Uranium too expensive to compete against coal or natural gas. But there are powerful commercial interests to keep it this way. After the Westinghouse bankruptcy GE has a virtual monopoly on nuclear power. They are in no hurry to make any changes.

There is a better way: Thorium Nuclear power. The advantages are:

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel ia already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

There is no time to waste. This is my suggestion list:

1. Immediately take Thorium off the list of “source materials”. While Thorium is radioactive slightly above background radiation no amount of Thorium can make it go critical, and it cannot be source material for making bombs.

2. Make separate regulations for Thorium based Nuclear plants apart from Uranium plants. One thing that goes away is the need for evacuation zones due to the inherent safety of Thorium Nuclear plants.

3. Declare Thorium Nuclear Power to be the preferred replacement for Coal or Gas powered electric plants.

4. Streamline the permit process, like Uranium powered plants enjoyed when there was a desire to build Nuclear Bombs.

5. Increase research and development into Liquid Fluoride Thorium reactors to speed up their development.

6. Develop hybrid Tokamak powered Thorium reactors like the one Russia is developing to burn off transuraniun  nuclear waste products.

With all this done, I envision coal, gas and biofuel Power stations to be eliminated within ten years, and transuranium waste products to be eliminated within twenty years.

When Coal, gas and biofuel are eliminated as source for Electric Power, then it is time to switch most of the transportation to electric cars and trucks, but not before.

in another twenty years, maybe, just maybe it is time for Fusion Power to take over.

Let us get going!

 

Rising CO2, more clouds, a blessing or a curse? A Limerick.

The clouds that we see in the sky
is really the reason for why
we will not overheat;
Shields us from solar heat.
A feedback on which we rely.
I am a climate realist, that means I look at the totality of what is happening to the climate with increasing CO2 levels, and what it means for our future.

Climate alarmists and IPCC believe that the thermal response to increasing CO2 is a positive feedback from increasing water vapor that results from higher ocean temperatures, melting permafrost releasing Methane and melting of the polar ice caps. All this leads to much higher temperatures. Current climate model averages indicate a temperature rise of 4.7 C by 2100 if nothing is done, 4.65 C if U.S keeps all its Paris commitments and 4.53 C if all countries keep their part of the agreement. In all cases, with or without Paris agreement we are headed for a disaster of biblical proportions.

As the chart indicates, implementing all of the Paris agreement will delay the end of mankind as we know it by at most 4 years.

Myself and quite a few scientists, meteorologists, but mostly engineers believe the feedback loop in nature is far more complicated than that, in fact, there is a large negative feedback in the system, preventing a temperature runaway, and we have the observations to prove it.  The negative feedback manifests itself in 2 ways:

Inorganic feedback, represented by clouds. If there were no clouds, the tropics would average a temperature of  140 F  thanks to the greenhouse effect. The clouds reflect back up to 300 W/m2 into space rather than the same energy being absorbed into water or soil. Clouds are highly temperature dependent, especially cumulus and cumulonimbus clouds. The figure below shows temperature at the equator in the Pacific Ocean.

Cumulus clouds are formed in the morning, earlier the warmer it is, and not at all if it is cold, thunderstorms appear when it is warm enough. The figure shows how temperature in the equatorial Pacific rises until about 8:30 a.m, then actually declines between 9 and 12 a.m. even as the sun continues to rise. The feedback, which was positive at low temperatures becomes negative at warmer temperatures, and in the equatorial doldrums, surface temperature has found its equilibrium. No amount of CO2 will change that. Equatorial temperature follows the temperature of the ocean, warmer when there is an el niño, cooler when there is a la niña. Here is a chart of temperature increases since satellite measurements began as a function of latitude.

The tropics follow the ocean temperature closely, no long term rising trend, the extratropics are also stable.

Not so at the poles. the temperature record indicate a noticeable warming with large spikes up and down, up to 3 degree Celsius difference from year to year, especially the Arctic. So, how much has the Arctic melted? Here is a chart of Arctic ice cover for 31 May for the last 39 years.

If this trend continues, all ice may melt in 300 to 400 years, faster if there is further warming and nothing else is changing. Let’s take a look at the Arctic above the 80th latitude, an area of about 3,85 million square kilometers, less than 1% of the earth’s surface, but it is there where global warming is most pronounced. Here are two charts from the last 2 years, ending with Jul. 19,  2017.

Starting at summer 2016, the Arctic was melting quite normally, but something else happened that is not shown in the chart. Every 5 years or so, the Arctic suffer a large storm with full hurricane strength during the summer. In 2016 there was not one, but two such storms, and as they happened late in the season when the ice is rotten they result in a large ice loss, making the ice minimum the lowest on record, and the ice volume nearly 4,000 Gigatons (Gt) less than the 10 year average. Then the temperature from October thru April did run 7 degree Celsius warmer than normal with a spike as high as 20 degrees warmer. Yet today the deficit is down to less than 100 Gt. What happened? It snowed more than normal. In the Arctic, it gets warmer under clouds, warmer still when it snows. Take a look at Greenland and what has happened this freezing season. It has snowed and snowed and Greenland has accumulated 150 Gt more ice than normal. So, at this point in the season we are a total of 1650 Gt ahead of last year at this date (July 21), and this is with Arctic temperatures being seven degrees warmer than normal during the cold season. The counterintuitive conclusion is that it may very well be that warmer temperatures produces accumulation of snow and ice, colder temperatures with less snow accumulates less. What happens during the short Arctic summer? With more snow accumulated it takes longer to melt last years snow, so the temperature stays colder longer. This year the Arctic temperature has been running colder than normal every day since May 1 with no end in sight. If this melting period ends without melting all snow, multi year ice will accumulate, and if it continues unabated, a new ice age will start.

The second feedback loop is organic. More CO2 means more plant growth.  According to NASA there has been a significant greening of the earth, more than 10% since satellite measurements begun. This results in a cooling effect everywhere, except in areas that used to be treeless where they have a warming effect. The net effect is that we can now feed 2 billion more people than before without using more fertilizer. Check this picture from NASA, (now they can publish real science again) showing the increased leaf area extends nearly everywhere.

In addition, more leafs changes the water cycle, increases evapotranspiration, and more trees and vegetation reduces erosion and unwanted runoff. Good news all around.

In short, taking into account the negative feedback occurring the earth will warm up less than 0.5 degrees from now, not at all in the tropics, and less than 3 degrees at the poles. Without the Paris agreement there will be no increase in the death rates in the cities, except from the slight increase of city temperatures due to the urban heat effect. With the Paris agreement we will have to make draconian cuts in our use of electricity, meaning using much less air conditioning and even less heating, and life expectancy will decline.

We need energy. It takes a lot of energy to clean up the planet. Developing nations should be encouraged to use electricity rather than cooking by dried cow-dung. Coal is limited, and we should leave some for our great great grandchildren. Oil and gas should be preserved for aviation, since there is no realistic alternative with a high enough energy density. Therefore I am an advocate for Thorium based nuclear energy, being safer than Uranium based nuclear energy, and, properly implemented will produce about 0.01% of the long term radioactive waste compared to conventional nuclear power plants. And there is a million year supply  of Thorium available. Once the electricity power plants have fully switched away from coal and gas, then and only then is it time to switch to electric cars.  https://lenbilen.com/2017/07/14/twenty-two-reasons-to-rapidly-develop-thorium-based-nuclear-power-generation/

With no Paris agreement, will death rates increase?

From an Issue paper by Juanita Constible, Natural Resources Defense Council:

KILLER SUMMER HEAT:
PARIS AGREEMENT COMPLIANCE COULD AVERT HUNDREDS
OF THOUSANDS OF NEEDLESS DEATHS IN AMERICA’S CITIES.
Is this claim true?
I am a climate realist, that means I look at the totality of what is happening to the climate with increasing CO2 levels, and what it means for our future.

Climate alarmists and IPCC believe that the thermal response to increasing CO2 is a feedback gain from increasing water vapor that results from higher temperatures, leading to much higher temperatures. Current climate model averages indicate a temperature rise of 4.7 C by 2100 if nothing is done, 4.65 C if U.S keeps all its Paris commitments and 4.53 C if all countries keep their part of the agreement. In all cases, with or without Paris agreement we are headed for a disaster of biblical proportions.

As the chart indicates, implementing all of the Paris agreement will delay the end of mankind as we know it by at most 4 years.

Myself and quite a few scientists, meteorologists, but mostly engineers believe the feedback loop in nature is far more complicated than that, in fact, there is a large negative feedback in the system, preventing a temperature runaway, and we have the observations to prove it.  The negative feedback manifests itself in 2 ways:

Inorganic feedback, represented by clouds. If there were no clouds, the tropics would average a temperature of  140 F  thanks to the greenhouse effect. The clouds reflect back up to 300 W/m2 into space rather than the same energy being absorbed into water or soil. Clouds are highly temperature dependent, especially cumulus and cumulonimbus clouds. The figure below shows temperature at the equator in the Pacific Ocean.

Cumulus clouds are formed in the morning, earlier the warmer it is, and not at all if it is cold, thunderstorms appear when it is warm enough. The figure shows how temperature in the equatorial Pacific rises until about 8:30 a.m, then actually declines between 9 and 12 a.m. even as the sun continues to rise. The feedback, which was positive at low temperatures becomes negative at warmer temperatures, and in the equatorial doldrums, surface temperature has found its equilibrium. No amount of CO2 will change that. Equatorial temperature follows the temperature of the ocean, warmer when there is an el niño, cooler when there is a la niña. Here is a chart of temperature increases since satellite measurements began as a function of latitude.

The tropics follow the ocean temperature closely, no long term rising trend, the extratropics are also stable.

Not so at the poles. the temperature record indicate a noticeable warming with large spikes up and down, up to 3 degree Celsius difference from year to year, especially the Arctic. So, how much has the Arctic melted? Here is a chart of Arctic ice cover for 31 May for the last 39 years.

If this trend continues, all ice may melt in 300 to 400 years, faster if there is further warming and nothing else is changing. Let’s take a look at the Arctic above the 80th latitude, an area of about 3,85 million square kilometers, less than 1% of the earth’s surface, but it is there where global warming is most pronounced. Here are two charts from the last 2 years, ending with Jul. 2 2017.

meanT_2017

Starting at summer 2016, the Arctic was melting quite normally, but something else happened that is not shown in the chart. Every 5 years or so, the Arctic suffer a large storm with full hurricane strength during the summer. In 2016 there was no one, but two such storms, and as they happened late in the season when the ice is rotten they result in a large ice loss, making the ice minimum the lowest on record, and the ice volume nearly 4,000 Gigatons (Gt) less than the 30 year normal. Then the temperature from October thru April did run 7 degree Celsius warmer than normal with a spike as high as 20 degrees warmer. Yet today the deficit is down to 2,500 Gt. What happened? It snowed more than normal. In the Arctic, it gets warmer under clouds, warmer still when it snows. Take a look at Greenland and what has happened this freezing season. It has snowed and snowed and Greenland has accumulated 150 Gt more ice than normal. So, at this point in the season we are a total of 1650 Gt ahead of last year, and this is with Arctic temperatures being seven degrees warmer than normal during the cold season. The counterintuitive conclusion is that it may very well be that warmer temperatures produces accumulation of snow and ice, colder temperatures with less snow accumulates less. What happens during the short Arctic summer? With more snow accumulated it takes longer to melt last years snow, so the temperature stays colder longer. This year the Arctic temperature has been running colder than normal every day since May 1 with no end in sight. If this melting period ends without melting all snow, multi year ice will accumulate, and if it continues unabated, a new ice age will start.

The second feedback loop is organic. More CO2 means more plant growth.  According to NASA there has been a significant greening of the earth, more than 10% since satellite measurements begun. This results in a cooling effect everywhere, except in areas that used to be treeless where they have a warming effect. The net effect is that we can now feed 2 billion more people than before without using more fertilizer. Check this picture from NASA, (now they can publish real science again) showing the increased leaf area extends nearly everywhere.

In addition, more leafs changes the water cycle, increases evapotranspiration, and more trees and vegetation reduces erosion and unwanted runoff. Good news all around.

In short, taking into account the negative feedback occurring the earth will warm up less than 0.5 degrees from now, not at all in the tropics, and less than 3 degrees at the poles. Without the Paris agreement there will be no increase in the death rates in the cities, except from the slight increase of city temperatures due to the urban heat effect. With the Paris agreement we will have to make draconian cuts in our use of electricity, meaning using much less air conditioning and even less heating, and life expectancy will decline.

We need energy. It takes a lot of energy to clean up the planet. Developing nations should be encouraged to use electricity rather than cooking by dried cow-dung. Coal is limited, and we should leave some for our great great grandchildren. Oil and gas should be preserved for aviation, since there is no realistic alternative with a high enough energy density. Therefore I am an advocate for Thorium based nuclear energy, being safer than Uranium based nuclear energy, and, properly implemented will produce about 0.01% of the long term radioactive waste compared to conventional nuclear power plants. And there is a million year supply  of Thorium available. Once the electricity power plants have fully switched away from coal and gas, then and only then is it time to switch to electric cars.  https://lenbilen.com/2017/07/14/twenty-two-reasons-to-rapidly-develop-thorium-based-nuclear-power-generation/

With the Paris accord not signed, can the world still be saved? A look at the Arctic.

Now, with the Paris accord in jeopardy, can the world still be saved?

I want to reply to what climate alarmists say:  My conclusions on climate change are not in line with science logic. Being a climate realist, I never said that increasing CO2 is unimportant, only that the negative effects are vastly exaggerated, and the positive effects are ignored. let me explain:

Climate alarmists and IPCC believe that the thermal response to increasing CO2 is a feedback gain from increasing water vapor that results from higher temperatures, leading to much higher temperatures. Current climate model averages indicate a temperature rise of 4.7 C by 2100 if nothing is done, 4.65 C if U.S keeps all its Paris commitments and 4.53 C if all countries keep their part of the agreement. In all cases, with or without Paris agreement we are headed for a disaster of biblical proportions.

As the chart indicates, implementing all of the Paris agreement will delay the end of mankind as we know it by at most 4 years.

Myself and quite a few scientists, meteorologists, but mostly engineers believe the feedback loop in nature is far more complicated than that, in fact, there is a large negative feedback in the system, preventing a temperature runaway, and we have the observations to prove it.  The negative feedback manifests itself in 2 ways:

Inorganic feedback, represented by clouds. If there were no clouds, the tropics would average a temperature of  140 F  thanks to the greenhouse effect. The clouds reflect back up to 300 W/m2 into space rather than the same energy being absorbed into water or soil. Clouds are highly temperature dependent, especially cumulus and cumulonimbus clouds. Cumulus clouds are formed in the morning, earlier the warmer it is, and not at all if it is cold, thunderstorms appear when it is warm enough. The feedback, which was positive at low temperatures becomes negative at warmer temperatures, and in the equatorial doldrums, surface temperature has found its equilibrium. No amount of CO2 will change that. Equatorial temperature follows the temperature of the ocean, warmer when there is an el niño, cooler when there is a la niña. Here is a chart of temperature increases since satellite measurements began as a function of latitude.

The tropics follow the ocean temperature closely, no long term rising trend, the extratropics are also stable.

Not so at the poles. the temperature record indicate a noticeable warming with large spikes up and down, up to 3 degree Celsius difference from year to year, especially the Arctic. So, how much has the Arctic melted? Here is a chart of Arctic ice cover for 31 May for the last 39 years.

If this trend continues, all ice may melt in 300 to 400 years, faster if there is further warming and nothing else is changing. Let’s take a look at the Arctic above the 80th latitude, an area of about 3,85 million square kilometers, less than 1% of the earth’s surface, but it is there where global warming is most pronounced. Here are two charts from the last 2 years, ending with Aug 10. 2017.

meanT_2017

Starting at summer 2016, the Arctic was melting quite normally, but something else happened that is not shown in the chart. Every 5 years or so, the Arctic suffer a large storm with full hurricane strength during the summer. In 2016 there was no one, but two such storms, and as they happened late in the season when the ice is rotten they result in a large ice loss, making the ice minimum the lowest on record, and the ice volume nearly 4,000 Gigatons (Gt) less than the 30 year normal. Then the temperature from October thru April did run 7 degree Celsius warmer than normal with a spike as high as 20 degrees warmer. Yet today the deficit is down to 2,500 Gt. What happened? It snowed more than normal. In the Arctic, it gets warmer under clouds, warmer still when it snows. Take a look at Greenland and what has happened this freezing season. It has snowed and snowed and Greenland has accumulated 150 Gt more ice than normal. So, at this point in the season we are a total of 1650 Gt ahead of last year, and this is with Arctic temperatures being seven degrees warmer than normal during the cold season. The counterintuitive conclusion is that it may very well be that warmer temperatures produces accumulation of snow and ice, colder temperatures with less snow accumulates less. What happens during the short Arctic summer? With more snow accumulated it takes longer to melt last years snow, so the temperature stays colder longer. If this melting period ends without melting all snow, multi year ice will accumulate, and if it continues unabated, a new ice age will start.

The second feedback loop is organic. More CO2 means more plant growth.  According to NASA there has been a significant greening of the earth, more than 10% since satellite measurements begun. This results in a cooling effect everywhere, except in areas that used to be treeless where they have a warming effect. The net effect is that we can now feed 2 billion more people than before without using more fertilizer. Check this picture from NASA, (now they can publish real science again) showing the increased leaf area extends nearly everywhere.

In addition, more leafs changes the water cycle, increases evapotranspiration, and more trees and vegetation reduces erosion and unwanted runoff. Good news all around.

In short, taking into account the negative feedback occurring the earth will warm up less than 0.5 degrees from now, not at all in the tropics, and less than 3 degrees at the poles.

We need energy. It takes a lot of energy to clean up the planet. Developing nations should be encouraged to use electricity rather than cooking by dried cow-dung. Coal is limited, and we should leave some for our great great grandchildren. Oil and gas should be preserved for aviation, since there is no realistic alternative with a high enough energy density. Therefore I am an advocate for Thorium based nuclear energy, being safer than Uranium based nuclear energy, and, properly implemented will produce about 0.01% of the long term radioactive waste compared to conventional nuclear power plants. And there is a million year supply  of Thorium available. Once the electricity power plants have fully switched away from coal and gas, then and only then is it time to switch to electric cars.

On Climate Change. What can we learn from the snow?

Having a snow day here at State College, and watching the birds feast on theseeds dsc_0355in the feeder, remembering the temperature was in the fifties yesterday my thoughts went back, way back to a time when I was trying to figure out why it was so hard to calibrate a temperature programmed gas chromatograph  when analyzing samples  from -40C to 275C. During the cryogenic phase water vapor froze on the inside of the oven, and when the oven temperature then rose through the melting point of water, temperature rise took a pause until all the ice was evaporated. As a result, calibration could vary widely dependent on the humidity and how long the oven was in the cryogenic state.
The weather has been unusual this year. After a long drought the Pacific coast has been hit with a seemingly unbroken string of storms, carrying moisture all the way from the Philippines, resulting in record rain and snow. Likewise, in the Atlantic there have been a string of strong storms going from the Gulf of Mexico all the way up to Greenland or Norway, and the storms are still roaring. From time to time the temperature has been reported to be up to 30 degrees warmer than normal, and it has been raining as far north as Svalbard.

A few years ago there was a prediction (was is Al Gore?) that Arctic Sea ice would be totally gone by the year 2015 and the following charts were produced as proof:

arctic-albedo-loss-and-feedbacks-9-638The charts seem to indicate that by September 2015 Arctic ice would be totally gone and all Arctic snow by summer 2014.

Yogi Berra said: “It is hard to predict, especially about the future.” So how are we doing?

Arctic ice started out with the lowest minimum since 2012 and is still at record low levels for this time of the year.arctic_sea_ice_extent_zoomed_2017_day_34_1981-2010

The total sea ice volume is also at a record low for this time of the year: (from DMI, Danish Meteorological Institute)

cice_combine_thick_sm_en_20170211

Couple this with the message that 2016 was reported the warmest year on record, and there seems to be plenty cause for alarm. But then it was reported by whistle blowers that the temperature data is homogenized to better align with climate models, in other words, falsified, so we may have to look for something that does not change over time, like temperature. Snow and ice have the characteristic of freezing and melting at the same temperature, al long as there is no change in what else is in the snow or ice, like soot or salinity.

With all this ice melting, what is happening to the snow? Checking Rutgers’ University Global Snow Lab ice charts it is clear that the fall snow cover is increasing, signifying an about 8% increase in the last 50 years, and surprisingly,  a significant rise in the last 8 years.

This seems to hint it is getting colder.

Not so fast: what happens to the winter snow cover?

Again we see a slight upward movement, about 2% in the last 50 years.

The January 2017 result are in, and the snow cover was the 5th highest on record for January, so the upward trend continues, indicating the climate is getting colder.

But what happens in spring?

The story is quite different with the snow cover decreasing about 10% in the last 50 years.

That must mean the climate is warming.

Let us look at one more piece of smb_combine_sm_acc_en_20170206statistics: The Greenland ice cover.

This fall has seen a lot of snow falling over Greenland, about double of normal, much like the rain falling in California, the result of a string of storms starting in the Philippines, raining and snowing i California, snowing out in the Western states, recharging  themselves with moisture from the Gulf of Mexico, and finally snowing out over Greenland or Norway.

When the storms hit Greenland the temperature spikes, sometimes reaching 30F above normal, but it is still snowing!

This year the snow fallen over Greenland is larger than ever recorded. This means that  al this new-fallen snow will not melt during the melting season, which means the snow albedo is higher this year and will cause less snow melt than in years when the albedo is lower

ice-glaciers-2015-fig3-3c-tedesco_smlThe albedo was constantly getting lower until 2012, and then it again snowed more than normal and the albedo recovered in 2013, from then continuing a downward trend. This year it will probably recover some more, leading to a year of ice gain over Greenland.

Why is the albedo decreasing? Blame China. The last few years they have been building one dirty coal plant every week, spewing out soot and sulphur compounds in spite of their claim to have the best scrubbers. This is the reason for the earlier spring snow melt.

The conclusion?

The effects of  increasing CO2 is mush less than the effects from clouds and what the clouds reflect back into the sky and what they carry in the form of water vapor. We are now seeing the result of the end of the el nino, the raining out of the excess humidity, which happens when the earth again is cooling.

The 18 year pause is back, and is now 19 years.