The case for Thorium. 26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles.

LFTR is a type of Molten Salt Reactor with equipment to convert plentiful thorium into uranium (U233) to use as fuel. It can also use plutonium from LWR (Light Water Reactor) waste. LFTR is not very efficient at using depleted uranium (need a Fast-Spectrum reactor to fission U-238 effectively; in a thermal-spectrum reactor like LFTR or LWR, would convert some U-238 to plutonium which is fissile).

Because a LFTR fissions 99%+ of the fuel (whether thorium, or plutonium from nuclear waste), it consumes all the uranium and transuraniums leaving no long-term radioactive waste. 83% of the waste products are safely stabilized within 10 years. The remaining 17% need to be stored less than 350 years to become completely benign.

“LFTR technology can also be used to reprocess and consume the remaining fissile material in spent nuclear fuel stockpiles around the world and to extract and resell many of the other valuable fission byproducts that are currently deemed hazardous waste in their current spent fuel rod form. The U.S. nuclear industry has already allocated $25 billion for storage or reprocessing of spent nuclear fuel and the world currently has over 340,000 tons of spent LWR fuel with enough usable fissile material to start one 100 MWe LFTR per day for 93 years. (A 100 MW LFTR requires 100 kg of fissile material (U-233, U-235, or Pu-239) to start the chain reaction). LFTR can also be used to consume existing U-233 stockpiles at ORNL ($500 million allocated for stockpile destruction) and plutonium from weapons stockpiles.”

FS-MSRs essentially avoid the entire fuel qualification issue in that they are tolerant of any fissile material composition, with their inherent strong negative thermal reactivity feedback providing the control necessary to accommodate a shifting fuel feed stream. Fast Spectrum Molten Salt Reactor Options,

See also point 17: Russia develops a fission-fusion hybrid reactor.

Some of the pictures are from a slide presentation given by David Archibald in Melbourne Feb 5 2011. He posted it “for the benefit of all” which I have interpreted as waving the copyright of the pictures

http://wattsupwiththat.com/2011/02/12/david-archibald-on-climate-and-energy-security/

The case for Thorium. 18. Russia has an active Thorium program.

Russia has an active Thorium program This is a self-contained Thorium Nuclear Reactor on a barge. Coolant readily available. Hoist it a couple of cables and the town to be serviced will have all the power it needs. This is especially useful in the Arctic. Russia is trying to establish Arctic domination, both commercially and militarily. They have over 30 ice breakers, some of them nuclear. U.S. has two, only one of which are operational.
Russia is also trying to commercialize hybrid fusion-fission reactors:
Nuclear Engineering International: 29 May 2018

Russia develops a fission-fusion hybrid reactor.
A new fission-fusion hybrid reactor will be assembled at Russia’s Kurchatov Institute by the end of 2018, Peter Khvostenko, scientific adviser of the Kurchatov complex on thermonuclear energy and plasma technologies, announced on 14 May. The physical start-up of the facility is scheduled for 2020.The hybrid reactor combines the principles of thermonuclear and nuclear power – essentially a tokamak fusion reactor and a molten salt fission reactor. Neutrons produced in a small tokamak will be captured in a molten salt blanket located around tokamak. The facility will use Thorium as a fuel, which is cheaper and more abundant than uranium. Moreover, unlike a fusion reactor, a hybrid will not require super high temperatures to generate energy.

  • A new paper describes computer simulations of a hybrid fusion-fission reactor that runs on thorium.
  • Thorium has benefits compared with uranium reaction and has been endorsed by Democratic presidential candidate Andrew Yang.
  • In the reactor, plasma fusion generates neutrons that fuel subsequent fission.

 

Hybrid reactors reduce the impact of the nuclear fuel cycle on the environment. The concept combines conventional fission processes and fusion reactor principles, comprising a fusion reactor core in combination with a subcritical fission reactor. The results of the fusion reaction, which would normally be absorbed by the cooling system of the reactor, would feed into the fission section, and sustain the fission process. Thorium in a molten salt blanket will enable breeding of uranium-233.

Some of the expected advantages include:

  • Utilization of actinides and transmutation from long-lived radioactive waste;
  • An increase in energy recovered from uranium by a large factor;
  • The inherent  safety of the system, which can be shut down rapidly; and
  • High burnup of fissile materials leaving few by-products.

The hybrid fission-fusion reactor is seen as a near-term commercial application of fusion pending further research on pure fusion power systems.

This is very interesting, and I will follow up when I get more information.

Lenin still stands in Seattle. Who would ever topple the father of the movement? A Limerick.

Old Lenin stands tall in Seattle.

He is the main source of the battle.

Meanwhile statues come down

of great men of renown.

Bewildered we look, like dumb cattle.

Over the past few weeks, scores of statues of our founding fathers and Generals,  Cristóbal Colón, Junípero Serra , and even the Pioneer and the Pioneer Mother have been toppled by rioters. They will not stop until all historic memorials are demolished, like what happened in the onset of theFrench Revolution, the Russian Revolution or the Chinese Cultural Revolution.

The death toll from the French Revolution was about 40,000, from the Russian Revolution 7 to 12 million, and from the Cultural Revolution up to 20 million, followed by the Great Leap Forward, which heralded in the Great Famine, killing another 30 Million.

These are serious times.

 

 

President Trump is taking hydroxychloroquine! The international results are overwhelming, he is right!

In 2005 Dr. Anthony Fauci,the director of the (NIAID) National Institute of Allergy and Infectious Diseases, a position he still holds received the encouraging news that Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. The SARS epidemic petered out, ao the clinical trial was never executed.

Now the news about the efficacy of HydroxyChloroquine is coming in hot and heavy. The results are very encouraging. This is from a recent study in Marseilles, France:

We retrospectively report on 1061 SARS-CoV-2 positive tested patients treated for at least three days with the following regimen: HCQ (200 mg three times daily for ten days) + AZ (500 mg on day 1 followed by 250 mg daily for the next four days). Outcomes were death, clinical worsening (transfer to ICU, and >10 day hospitalization) and viral shedding persistence (>10 days).

Results

A total of 1061 patients were included in this analysis (46.4% male, mean age 43.6 years – range 14–95 years). Good clinical outcome and virological cure were obtained in 973 patients within 10 days (91.7%). Prolonged viral carriage was observed in 47 patients (4.4%) and was associated to a higher viral load at diagnosis (p < .001) but viral culture was negative at day 10. All but one, were PCR-cleared at day 15. A poor clinical outcome (PClinO) was observed for 46 patients (4.3%) and 8 died (0.75%) (74–95 years old). All deaths resulted from respiratory failure and not from cardiac toxicity. Five patients are still hospitalized (98.7% of patients cured so far). PClinO was associated with older age (OR 1.11), severity of illness at admission (OR 10.05) and low HCQ serum concentration. PClinO was independently associated with the use of selective beta-blocking agents and angiotensin II receptor blockers (p < .05). A total of 2.3% of patients reported mild adverse events (gastrointestinal or skin symptoms, headache, insomnia and transient blurred vision).

Conclusion

Administration of the HCQ+AZ combination before COVID-19 complications occur is safe and associated with a very low fatality rate in patients.

Since then, prescriptions for the drug cocktail in Marseilles is up 7000%, and is also increasing in the rest of France, especially the Paris region.

But France is by no means the first country to go all out prescribing the drug cocktail. At least twelve countries are doing it, and Turkey and Morocco prescribe it to all with COVID-19 symptoms ( after first checking their heart). Russia joined six weeks later. Here are the results:

If we look at the results from onset to today, some interesting facts stand out

Turkey: Death rate 50 per million. ratio of recovered cases/death is 37

Morocco: Death rate 5 per million. ratio of recovered cases/death is 19.6

Russia: Death rate 19 per million. ratio of recovered cases/death is 19.6 and rising, but they started six weeks later and have not yet reached their infection maximum.

France: Death rate 433 per million. ratio of recovered cases/death is 2.2, but their new case maximum was 11 weeks ago and the maximum death rate was 9 weeks ago, way before any prescriptions increased.

U.S. does not do an even job of reporting recovered cases, so the results will only be valid for some states. Michigan seems to be one state that records recoveries.

Michigan: Death rate 492 per million. ratio of recovered cases/death is 5.7

The best state is South Dakota, but there Governor Kristi Noem conducted a semi clinical (not double blind) trial, and the results speak for themselves.

South Dakota: Death rate 50 per million. ratio of recovered cases/death is 63.27 !!

My suggestion is this: Give the HCQ+ AZT + Zinc +Vitamin D for 5 days as soon as symptoms occur. Give HZQ + Zinc + Vitamin D for 5 days to all the infected person’s contacts, then their quarantine is over, otherwise it is 14 days. Check for heart rhythm problems, but otherwise go ahead.

The results from Turkey + Russia + Morocco  involved more than 170,000 recovered cases, far more than any clinical study, and showed the effect both before and after HCQ became the drug of choice, so the effect is real enough!

President Trump promises innovative approaches to eliminate nuclear waste. Thorium is the answer! A limerick.

The nuclear waste meant for Yucca

would destine Nevada the sucka

But with Thorium we rid

us of waste that is hid

No need for that waste to be trucka!

Where is the storage for spent nuclear fuel and other nuclear waste now? Look at the map, it is scary.

 

 

 

 

 

 

 

And this is just the U.S. installations!

Many years ago I studied Engineering at Chalmers’ University in Sweden and I thought I would become a nuclear engineer. Sweden had at that time a peaceful heavy water based nuclear power program together with Canada and India. The advantage with heavy water as moderator is that it can use natural, un-enriched Uranium. One of the end products is of course Plutonium 239, the preferred material to make nuclear bombs, but it could also use Thorium, and the end product is then Plutonium 238, used in space exploration, and we were dreaming big. One of the advantages of Thorium as fuel is that it produces about 0,01%  of trans-Uranium waste compared to Uranium as fuel. About that time the U.S. proposed we should abandon the heavy water program and switch to light water enriched Uranium based nuclear power. They would sell the enriched Uranium, and reprocess the spent fuel at cost. They also had the ideal final resting place for the radioactive waste products in Nevada. This was an offer the Swedish government could not refuse. This was in the 1960’s! India on the other hand did refuse, and they eventually got the nuclear bomb. In disgust I switched my attention back to control engineering.

 

 

 

What did President Trump mean with innovative approaches?

This is where Thorium comes in!

Here is a list of

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

Look carefully at note 17. We can do better than Russia!

The red dragon of China. World dominance by 2025 averted? A Limerick.

Insane is to praise the Chinese

and say they go green, planting trees;

for they lie, cheat and steal,

human rights they repeal.

We must stand, no more time to appease.

Beijing’s massive tree planting campaign has worsened air pollution in the city, a new study by Chinese scientists suggests. The “Green Great Wall” prevented dispersion of as much as 15 per cent of PM2.5 – health-damaging fine particulates less than 2.5 micrometres in diameter – during a major smog episode in the capital in January 2014, according to researchers. At its peak during the period studied, the PM2.5 reached 350 micrograms per cubic metre of air – 14 times the safety level recommended by the World Health Organisation.

Man-made forest slowed down the winds that otherwise help to disperse smog and turned the city into an enormous trap for air pollutants, according to the scientists.

How can that be?

China burned 51.2% of the world’s coal in 2012, USA produced 12.5%. China’s production was more than four times larger. This has now stabilized and was in 2018 47%, because India and the real developing world are increasing their dependence on coal for electricity production, and also for cooking meals.

This of course is with the Paris accord in mind. U.S. and the European countries are to limit their emissions and slowly diminish them, down to a per capita emission comparable to the mid 1800’s, while China, being a “developing” country is allowed to increase their emissions until 2030, and then stabilize them, not decrease them.

How can they be burning nearly half the world’s coal mined?

One reason is they are the world’s state controlled manufacturing company. They are also responsible for half the world’s Steel production. China produced 50.3% of the world’s crude Steel in 2015, USA produced 4.9%. China’s production was over 20 times larger than the U.S.Some of this steel was dumped below production cost to crush our domestic low end steel industry. An example: Rolled steel to make steel cans were exported at about $200 a ton, the production cost in the U.S. is more like $400 a ton. They can do this, since their environmental regulations only pay lip service to pollution. Remember how Pittsburgh was 60 years ago? China is much worse.

Cement production. China produced 51.4% of the world’s cement in 2015, USA produced 1.8%. China’s production was almost 30 times larger.

It takes a lot of concrete to build artificial islands so they can take control of the South China Sea. But they are building many other things,  Ghost Cities, but also an impressive infrastructure with high speed trains on elevated concrete tracks.

Worrisome as that may be, it isnothing compared to China,s dominance in Rare Earth Metals. Let me explain why rare earth metals are so important to our modern economy.

First, rare earth metals re not rare at all, they exist in small quantities together with Thorium and sometimes Uranium wherever other metals are mined.

The Lanthanides occur in quantity in Monazite, a byproduct of mining Phosphates, but also as a byproduct of mining Titanium, and even from some Iron ores. The rare earth metals are free to begin extraction if it was not for one thing, they also contain Thorium, and Thorium is radio-active, so in the mid 1980’s the NRC and IAEA reclassified Monazite and anything containing Thorium as a “Source Material” and after that it became too costly to comply with all the regulations for nuclear material, so all production of rare earth minerals ceased in the U.S.

China saw an opportunity to grab the world market for Rare Earth Metals and is now controlling about 94% of the supply of all rare earth metals.

So what are rare earth metals used for?

China now has a de facto monopoly on all usages of rare earth metals, and in the case of war or an embargo, not only are our precious cell phones and computers in jeopardy, so is our defense, night vision goggles, aircraft engines, navigation systems, laser guidance, just to name a few uses.

And not only that, we import the completed parts from China, even for our most sophisticated military equipment, such as the F35 aircraft, after telling the Chinese how to make the components. The very same components are now in China’s version of the F35, still under development, but in a year or so China will have their faithful copies made! A F35 aircraft contains about 935 pounds of rare earth metals.

This is clearly unsustainable, so in 2014  Congress tried to pass HR 4883 and         S 2006 to remedy the situation, but the bills got killed in review by none other than the defense department, citing National Security! Our only major rare earth metals mine reopened, only to go bankrupt in 2015. It has since reopened, but the ore is shipped to China for refining! One good point is that the Mountain Pass mine is scheduled to reopen the processing facilities late 2020.

The idea was that we should change our electricity production into renewable sources, such as wind and solar.

Wind power uses a lot of rare earth metals to get the most efficient generators, all made by China. Wind power is about maxed out, that is, if you care about birds, especially eagles and raptors. The allowable bald eagle kill was upped from 1200 to 4200 a year for all U.S. wind turbines during the Obama administration. Killed golden eagles and storks has a S250000 fine, paid by the electricity users, and if we build it out more, we may exterminate some species.

Solar power looked promising until pollution was taken into consideration.  China added 53 GW solar capacity in  2017.  The forecast for this year i 45 GW, and for next year 35 GW.

The efficiency of solar panels are drastically reduced by the layer of soot accumulating daily from air pollution. They have to be cleaned daily with water, and water is in short supply in northern China. The yellow river no longer reaches the ocean during large periods of the year, all water is spoken for. In southern India a solar farm used up so much water that the wells went dry and there was no more water for agriculture and people, except during the monsoon season. Germany has given up on their solar program except for special needs.

Where it rains, China pollutes. The Yang -Tse  river carries nearly half the plastic waste that is dumped in the ocean. It can be stopped, but it will mean a lot of energy, both man-power and electricity  to do all the cleanup.

The solution is found in Thorium power. Here are 25 reasons why we shouls jump on the opportunity to solve the energy crisis:

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

Did I mention that Thorium based reactors do not produce CO2, and molten salt reactors do not use water?

Oh – and wish President Trump well in our negotiations with China. Pray, if you believe.

 

Climate emergency? No, but plenty of environmental and conservation challenges. Only Thorium Nuclear power can solve the energy challenge.

We live in challenging times. while, in a previous blog it was pointed out  that the” climate catastrophe” is not real and the scientific reasons why for a doubling of the atmospheric CO2 concentration the average temperature rise would be less than 0.4C, almost negligible and well within the Paris accord without changing anything we are doing about CO2 emissions.

If increasing CO2 production is not the problem, then what is? Let us take a look at the sources  from which U.S. generates electrical energy.

Image result for us electricity generation by source

We live in challenging times indeed, with enormous environmental challenges. It takes a lot of energy to clean up the mess we have generated over the ages. It would be a shame to use up our remaining coal, oil and gas to produce the electricity needed to clean up. Oil coal and gas will eventually be depleted and we need to save some for our great grandchildren so they can enjoy flying like we have become accustomed to. Like the famous conservationist Sarah Palin once said: “for when it’s gone, it’s gone.

Solar generation is about 4 times more expensive (without subsidies) to produce energy than coal and gas, but has important niche applications, such as on roofs for backup in case of short grid failures and for peak power assist. The Amish people have given many practical applications on how to live off the grid.

Wind power is cheaper when the wind blows, but the full generation capacity has to be there even when the wind doesn’t blow, so the only gain from wind power is to lessen the mining or extraction of carbon. In addition, wind power kills birds, the free yearly quota of allowable Bald Eagle kills was upped from 1200 to 4200 during the Obama administration. Golden Eagles and a few other rare birds have a quarter of a million dollar fine associated with their kills. If wind power is increased without finding a solution to the bird kills, whole species may become extinct.

Hydroelectric power is for all practical purpose maxed out, except one large untapped resource; the Kongo river in Africa. Some hydro electrical project do more harm than good, such as the Aswan Dam in Egypt, and some are waiting for the next big earthquake, such as the Three Gorges Dam in China.

Geothermal power is good but difficult and risky to utilize in geologically unstable areas.

Biomass should never be burned for electricity production but be used for soil regeneration to combat erosion. Only polluted biomass such as medical waste and plastics should be incinerated at high temperature, complete with scrubbers to eliminate poisonous gases.

All necessary cleanup and recycling consume a lot of energy, and it has to be generated somehow. We would like save some Coal, Natural Gas and Petroleum for our great grandchildren. This leaves us only

Nuclear power.  After a nearly thirty year hiatus in building new nuclear power plants they are slowly being built again. The permit process is fraught with citizen opposition (NIMBY), very strict bureaucratic delay, first by the Three Mile Island incident, then by the Chernobyl disaster/unintended sabotage, and finally by the Fukushima catastrophe. In addition conventional nuclear power produces large amounts of transuranium waste products that has to be stored for a million years. The Obama administration ended reprocessing of spent fuel rods, so not only must the transuranium products be stored, but also some unused U235. This makes conventional nuclear power using enriched Uranium too expensive to compete against coal or natural gas. But there are powerful commercial interests to keep it this way. After the Westinghouse bankruptcy GE has a virtual monopoly on nuclear power. They are in no hurry to make any changes.

There is a better way: Thorium Nuclear power. The advantages are:

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel ia already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

There is no time to waste. This is my suggestion list:

1. Immediately take Thorium off the list of “source materials”. While Thorium is radioactive slightly above background radiation no amount of Thorium can make it go critical, and it cannot be source material for making bombs.

2. Make separate regulations for Thorium based Nuclear plants apart from Uranium plants. One thing that goes away is the need for evacuation zones due to the inherent safety of Thorium Nuclear plants.

3. Declare Thorium Nuclear Power to be the preferred replacement for Coal or Gas powered electric plants.

4. Streamline the permit process, like Uranium powered plants enjoyed when there was a desire to build Nuclear Bombs.

5. Increase research and development into Liquid Fluoride Thorium reactors to speed up their development.

6. Develop hybrid Tokamak powered Thorium reactors like the one Russia is developing to burn off transuraniun  nuclear waste products.

With all this done, I envision coal, gas and biofuel Power stations to be eliminated within ten years, and transuranium waste products to be eliminated within twenty years.

When Coal, gas and biofuel are eliminated as source for Electric Power, then it is time to switch most of the transportation to electric cars and trucks, but not before.

After that, maybe, just maybe it is time for Fusion Power to take over.

Let us get going!

 

 

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

The need to develop Thorium based Nuclear Energy as the major electric energy supply. 25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

LFTR is a type of Molten Salt Reactor with equipment to convert plentiful thorium into uranium (U233) to use as fuel. It can also use plutonium from LWR waste. LFTR is not very efficient at using depleted uranium (need a Fast-Spectrum reactor to fission U-238 effectively; in a thermal-spectrum reactor like LFTR or LWR, would convert some U-238 to plutonium which is fissile).

Because a LFTR fissions 99%+ of the fuel (whether thorium, or plutonium from nuclear waste), it consumes all the uranium and transuranics leaving no long-term radioactive waste. 83% of the waste products are safely stabilized within 10 years. The remaining 17% need to be stored less than 350 years to become completely benign.

“LFTR technology can also be used to reprocess and consume the remaining fissile material in spent nuclear fuel stockpiles around the world and to extract and resell many of the other valuable fission byproducts that are currently deemed hazardous waste in their current spent fuel rod form. The U.S. nuclear industry has already allocated $25 billion for storage or reprocessing of spent nuclear fuel and the world currently has over 340,000 tonnes of spent LWR fuel with enough usable fissile material to start one 100 MWe LFTR per day for 93 years. (A 100 MW LFTR requires 100 kg of fissile material (U-233, U-235, or Pu-239) to start the chain reaction). LFTR can also be used to consume existing U-233 stockpiles at ORNL ($500 million allocated for stockpile destruction) and plutonium from weapons stockpiles.”

FS-MSRs essentially avoid the entire fuel qualification issue in that they are tolerant of any fissile material composition, with their inherent strong negative thermal reactivity feedback providing the control necessary to accommodate a shifting fuel feed stream. Fast Spectrum Molten Salt Reactor Options,

See also point 17: Russia develops a fission-fusion hybrid reactor.

Some of the pictures are from a slide presentation given by David Archibald in Melbourne Feb 5 2011. He posted it “for the benefit of all” which I have interpreted as waving the copyright of the pictures

http://wattsupwiththat.com/2011/02/12/david-archibald-on-climate-and-energy-security/

The need to develop Thorium based Nuclear Energy as the major electric energy supply. 17. Russia has an active Thorium program.

Russia has an active Thorium program This is a self-contained Thorium Nuclear Reactor on a barge. Coolant readily available. Hoist it a couple of cables and the town to be serviced will have all the power it needs. This is especially useful in the Arctic. Russia is trying to establish Arctic domination, both commercially and militarily. They have over 30 ice breakers, some of them nuclear. U.S. has two, only one of which are operational.
Russia is also trying to commercialize hybrid fusion-fission reactors:
Nuclear Engineering International: 29 May 2018

Russia develops a fission-fusion hybrid reactor.
A new fission-fusion hybrid reactor will be assembled at Russia’s Kurchatov Institute by the end of 2018, Peter Khvostenko, scientific adviser of the Kurchatov complex on thermonuclear energy and plasma technologies, announced on 14 May. The physical start-up of the facility is scheduled for 2020.

The hybrid reactor combines the principles of thermonuclear and nuclear power – essentially a tokamak fusion reactor and a molten salt fission reactor. Neutrons produced in a small tokamak will be captured in a molten salt blanket located around tokamak. The facility will use Thorium as a fuel, which is cheaper and more abundant than uranium. Moreover, unlike a fusion reactor, a hybrid will not require super high temperatures to generate energy.

Hybrid reactors reduce the impact of the nuclear fuel cycle on the environment. The concept combines conventional fission processes and fusion reactor principles, comprising a fusion reactor core in combination with a subcritical fission reactor. The results of the fusion reaction, which would normally be absorbed by the cooling system of the reactor, would feed into the fission section, and sustain the fission process. Thorium in a molten salt blanket will enable breeding or uranium-233.

Some of the expected advantages include:

  • Utilization of actinides and transmutation from long-lived radioactive waste;
  • An increase in energy recovered from uranium by a large factor;
  • The inherent  safety of the system, which can be shut down rapidly; and
  • High burnup of fissile materials leaving few by-products.

The hybrid fission-fusion reactor is seen as a near-term commercial application of fusion pending further research on pure fusion power systems.