The inflationary aspects of the “Inflation Reduction Act”. The “Green New deal” is wrong. There is a better way to do clean energy.

Below is the experience from the European union of retail cost of electricity in all member nations from the year 2019, the last year to make any meaningful analysis, Covid and the Ukraine war has made worthless any newer analysis.

This slide tells it best. The real cost for Solar and Wind electricity is 5.7 times that of the average of coal, gas, nuclear and hydro-electric power. The real reason is that you still need all the generating power for when the wind doesn’t blow enough or too much, and the sun doesn’t shine, which is most of the time. In addition, solar panels and windmills require mining of rare earth metals, and are as such highly mining intensive. Then there is the cost of disposal, which has already begun for first generation wind mills and solar panels.

The solution is simple: Do not buy any more solar panels from China! Let them use them themselves, they may then only have to build a thousand new dirty lignite coal fired power plants instead of 1171 between now and 2030

The other inflationary thing is the rising cost of Lithium and rare earth metals. In 2020 the price of LiCO2 was around 40,000 yuan/ton (yes, Lithium and rare earth metals are traded in Chinese currency). The price since then has more than twelve-folded and is now close to half a million yuan/ton.

China produces three-quarters of all lithium-ion batteries and is home to 70% of production capacity for cathodes and 85% for anodes (both are key components of batteries).

Over half of lithium, cobalt and graphite processing and refining capacity is also located in China. The U.S has a high quality rare earth metal mine in Mountain Pass, CA.,

but the refining is done in China. In June 2022 Amarillo, Texas had a groundbreaking ceremony for a rare earth metals refinery, so refining capacity will finally return to the U.S. See more here. Below is a chart of the worldwide mining of rare earth metals. Notice the prominent role Myanmar plays in rare earth metals. China is positioning itself to dominate Myanmar for their metals and to build an oil import pipeline to avoid the Malacca strait choke point.

In 2016, Hunter Biden’s Bohai Harvest RST invested in China’s Contemporary Amperex Technology Co. (CATL), the world’s largest lithium ion battery producer.

Remember this every time you hear Joe Biden talk about Green new deal and electric vehicles.

So, my suggestion is simple: Do not buy any solar panels from China, let them install them in China at 4.7 times the price of coal power. this is a much cleaner global investment. China was planning to build 1171 new coal plants polluting more than our clean coal could ever do. Likewise do not buy any more wind mill generators from China, let them install them in China. Wait to promote electric vehicles until the grid is built up to handle the additional demand for electricity.

This would save about 430 billion dollars from the inflation reduction act. What can we do instead and achieve an even better outcome? Check this video.

What shall be done? Congress must immediately pass SB4242. Ten years ago I made the same observation, see here. At that time there was 1400 kg U-233 remaining at Oak Ridge. A ton has been downblended since then. It is late, but not too late to save the rest. Here is a very illuminating video:

I agree totally with this video. Molten salt Thorium reactors can produce electricity for less than 5 cents per kilowatt-hour, comparable to coal and five times less than wind and solar when mass produced as SMR’s (small Modular Reactors. ) A 100 MW reactor can be built on an assembly line, and the vital parts can be shipped in 3 standard containers over road. They require much less mining to produce than the corresponding windmills and solar panels, and Thorium is already mined as a byproduct of mining rare earth metals. The only cost is therefore the cost of extracting the Thorium.

How is China dealing with Thorium nuclear power? They recently approved starting up their own molten Salt reactor, (source here.

In January 2011, CAS launched a CNY3 billion (USD444 million) R&D programme on liquid fluoride thorium reactors (LFTRs), known there as the thorium-breeding molten-salt reactor (Th-MSR or TMSR), and claimed to have the world’s largest national effort on it, hoping to obtain full intellectual property rights on the technology. This is also known as the fluoride salt-cooled high-temperature reactor (FHR). The TMSR Centre at SINAP at Jiading, Shanghai, is responsible.

Construction of the 2 MWt TMSR-LF1 reactor began in September 2018 and was reportedly completed in August 2021. The prototype was scheduled to be completed in 2024, but work was accelerated.

“According to the relevant provisions of the Nuclear Safety Law of the People’s Republic of China and the Regulations of the People’s Republic of China on the Safety Supervision and Administration of Civilian Nuclear Facilities, our bureau has conducted a technical review of the application documents you submitted, and believes that your 2 MWt liquid fuel thorium-based molten salt experimental reactor commissioning plan (Version V1.3) is acceptable and is hereby approved,” the Ministry of Ecology and Environment told SINAP on 2 August.

It added: “During the commissioning process of your 2 MWt liquid fuel thorium-based molten salt experimental reactor, you should strictly implement this plan to ensure the effectiveness of the implementation of the plan and ensure the safety and quality of debugging. If any major abnormality occurs during the commissioning process, it should be reported to our bureau and the Northwest Nuclear and Radiation Safety Supervision Station in time.”

The TMSR-LF1 will use fuel enriched to under 20% U-235, have a thorium inventory of about 50 kg and conversion ratio of about 0.1. A fertile blanket of lithium-beryllium fluoride (FLiBe) with 99.95% Li-7 will be used, and fuel as UF4.

The project is expected to start on a batch basis with some online refueling and removal of gaseous fission products, but discharging all fuel salt after 5-8 years for reprocessing and separation of fission products and minor actinides for storage. It will proceed to a continuous process of recycling salt, uranium and thorium, with online separation of fission products and minor actinides. The reactor will work up from about 20% thorium fission to about 80%.

If the TMSR-LF1 proves successful, China plans to build a reactor with a capacity of 373 MWt by 2030.

As this type of reactor does not require water for cooling, it will be able to operate in desert regions. The Chinese government has plans to build more across the sparsely populated deserts and plains of western China, complementing wind and solar plants and reducing China’s reliance on coal-fired power stations. The reactor may also be built outside China in Belt and Road Initiative nations.

The liquid fuel design is descended from the 1960s Molten-Salt Reactor Experiment at Oak Ridge National Laboratory in the USA.

Researched and written by World Nuclear News.

As of yet China does not have any U233, so they have to use U235 as a start fuel. This will produce PU239 as well as U233, so the separation step is far more complicated. The U.S. still have 450 kg of U233, so the separation step can be made clean, and we can make a clean, breeding reactor with 0,01 % of the nuclear waste if conventional reactors.

The conversion of Thorium 232 to Uranium 233, leading to fission looks like this:

To remain pure, the protactinium mist be separated from the neutron bombarding environment as soon after it is generated as possible to avoid it to be transfered to U 234, which is non fissible, but radioactive. The breeding coefficient is 1.03, which means that 3% more U233 is generated than consumed. The half-life of the Protactinium is 27 days, so it will take up to 900 days for the U233 to double, which is two and a half years.

There is no time to spare. Pass SB4242 immediately, build a clean Molten salt Thorium reactor as soon as possible, remove Thorium as a source material and streamline the permit process so permits can be issued in weeks instead of years.

The thorium energy is the future clean energy until fusion is perfected, not solar panels or windmills, which do far more damage to the environment than Thorium nuclear plants!

Why NO republican voted for the “Inflation Reduction Act”. No Nancy, they did not vote against “Mother Earth”.

Republicans are more concerned about the real well being of the Earth than the Democrats, but are not fooled by the myth of Gaia, a theory that the Earth has run out of room to regulate itself because of rising CO2 levels, and the only chance we have to survive is to eliminate fossil fuels, and fast.

Republicans realize that the cost of eliminate fossil fuels before the technology is ready is draconian. Below is the experience from the European union of retail cost of electricity in all member nations from the year 2019, the last year to make any meaningful analysis, Covid and the Ukraine war has made worthless any newer analysis.

This slide tells it best. The real cost for Solar and Wind electricity is 5.7 times that of coal, gas, nuclear and hydro-electric. The real reason is that you still need all the generating power for when the wind doesn’t blow enough or too much, and the sun doesn’t shine, which is most of the time.

The solution is simple: Do not buy any more solar panels from China! Let them use them themselves, they may then only have to build 1135 new dirty lignite coal fired power plants instead of 1171 between now and 2030

Secondly, do not buy any new windmill generators from China. Let them use them themself to generate electricity at 5,7 times the cost of coal. Besides, wind turbines kill birds, especially bald and golden eagles. The eagles like to build their aeries on top of the generators, and sooner or later, wham, they are whacked dead by the blades. This way China could further reduce their need for additional coal fired plants to below 1100 between now and 2030.

The so called inflation reduction act mandates installing solar and wind power at 5.7 times the real cost of providing electricity with conventional means, such as coal, gas and nuclear. There are better ways to spend over 300 billion dollars.

What should we do instead? China used to have a 90+ percent share of mining and refining of rare earth metals. We need to re-develop our own capability to refine rare earth metals. Thorium is among the metals mined together with rare earth metals, and when Thorium, about as radioactive as background radiation was declared a source material, it became unprofitable to mine and refine rare earth metals in the U.S. Thorium should not be a source material, only Uranium. This is important for our national security. See more here.

We live in only one world. As a concerned citizen I realize we have immense environmental challenges before us, with water pollution; from plastics in the ocean, excess fertilizer in the rivers, poison from all kinds of chemicals, including antibiotics, birth control and other medicines flushed down the toilet after going through our bodies, animals fed antibiotics, pest control, weed control and so on. Increasing CO2 is not one of the problems, it will in fact help with erosion control, and allow us to feed more people on less agricultural land with proper management, and require less fertilizer and water to do so. In fact, proper water management is a larger problem, with some rivers no longer even reaching the ocean. All water is already spoken for, especially in the 10 to 40 degrees latitude, where most people live.

In the atmosphere the two most important greenhouse gases are water vapor and CO2 with methane a distant third. Water vapor is much more of a greenhouse gas everywhere except near the tropopause high above the high clouds and near the poles when the temperature is below 0 F, way below freezing. A chart shows the relationship between CO2 and water vapor:

Image result for h20 and co2 as greenhouse gases

Source: http://notrickszone.com/2017/07/31/new-paper-co2-has-negligible-influence-on-earths-temperature/

Of particular interest are the round dots representing the South Pole. We have really good global data for over 60 years. The Amundsen Scott – South Pole weather station, the average temperature of Winter season 2021 (April 2021 – September 2021) reached only -61,0°C / -78°F, and at this temperature CO2 is the dominant greenhouse gas by more than a factor of ten more important than water vapor. We have reliable measurements for the temperature change at the South Pole since 1957. During this time CO2 gas increased 31% to 413ppm, Methane increased 16% to 1.85 ppm and Nitrous oxide decreased, but this is a gas mostly confined to urban areas, and is now below 0.05 ppm worldwide. With CO2 increasing by 31% and water vapor negligible one would expect a temperature rise over 64 years of 0.65 C, or one degree Celsius warmer per century according to extrapolated lab measurements. This is the observed trend:

With 2021 value included the temperature trend is two degrees Celsius cooler per century!

At the South Pole snowfall is negligible in the winter, and for the whole year it is only 1.3 inches. No model would have predicted the cooling trend, so there must be other factors that are are more important, since real measurements beat models every time.

Even in Barrow, Alaska water vapor is the dominant greenhouse gas. Only at the South Pole (And North Pole) does CO2 dominate (but only in the winter).

All Climate models take this into account, and that is why they all predict that the major temperature increase will occur in the polar regions with melting icecaps and other dire consequences. But they also predict a uniform temperature rise from the increased forcing from CO2 and the additional water vapor resulting from the increased temperature.

This is wrong on two accounts. First, CO2 and H2O gas are nor orthogonal, that means they both absorb in the same frequency bands. There are three bands where CO2 absorbs more than H2O in the far infrared band, but other than that H2O is the main absorber. If H2O is 80 times as common as CO2 as it is around the equator, water vapor is still the dominant absorber, and the amount of CO2 is irrelevant.

Secondly gases cannot absorb more than 100% of the energy available in any given energy wavelength! So if H2O did absorb 80% of the energy and CO2 absorbed 50%, the sum is not 130%, only 90%. (0.8 + 0.5×0,2 or 0.5 + 0.8×0.5). In this example CO2 only adds one quarter of what the models predict.

How do I know this is true? Lucky for us we can measure what increasing CO2 in the atmosphere has already accomplished. For a model to have credibility it must be tested with measurements, and pass the test. There is important evidence suggesting the basic theory is wrong. All greenhouse gases work by affecting the lapse rate in the tropics. They thus create a “hot spot” in the tropical troposphere. The theorized “hot spot” is shown in the early IPCC publications. (Fig A)

Fig. B shows observations. The hotspot is not there. If the hotspot is not there, the models must be wrong. So what is wrong with the models? This was reported in 2008 and the models still assume the additive nature of greenhouse gases, even to the point when more than 100% of the energy in a given band is absorbed.

How about Methane? Do not worry, it absorbs nearly exclusively in the same bands as water vapor and has no measurable influence on the climate.

But it will get warmer at the poles. That will cause melting of the ice-caps? Not so fast. When temperature rises the atmosphere can hold more water vapor, so it will snow more at higher latitudes. While winter temperatures will be higher with more snowfall, this will lower the summer temperatures until the extra snow has melted. And that is what is happening in the Arctics

As we can see from this picture, the winters were about 5 degrees warmer, but starting from mid April through mid August temperatures were lower. It takes time to melt all the extra snow that fell because of the less cold air, able to contain more water vapor.

These are my suggestions

  1. Do not worry about increasing CO2 levels. The major temperature stabilizer is clouds, and they will keep the earth from overheating by reflecting back into space a large amount of incoming solar radiation. Always did, and always will, even when the CO2 concentration was more than 10,000 ppm millions of years ago. Ice ages will still come, and this is the next major climate change, the long term cooling trend is one degree C cooling per 2000 years. Do not buy any more solar panels from China! China is by far the world’s largest polluter of real air and water pollution.
  2. Clean up rivers, lakes and oceans from pollution. This is a priority.
  3. Limit Wind turbine electric energy to areas not populated by large birds to save the birds. Already over 1.3 million birds a year are killed by wind turbines, including the bald and Golden Eagles that like to build their aeries on top of wind turbines. Above all, do not import any more wind generators motors from China. They have severed all climate change cooperation with the U.S. Let them build a few less very polluting coal fired electric plants between now and 2030. China was planning to build 1171 additional coal plants.
  4. Do not build large solar concentration farms. They too kill birds.
  5. Solar panels are o.k. not in large farms, but distributed on roofs to provide small scale backup power. They should be produced in the U.S. after the capacity to again refine rare earth metals has been established.
  6. Exploit geothermal energy only in geologically stable areas.
  7. Where ever possible add peak power generation and storage capacity to existing hydroelectric power plants by pumping back water into the dams during excess capacity.
  8. Add peak power storage dams, even in wildlife preserves. The birds and animals don’t mind.
  9. Develop Thorium based Nuclear Power. Russia, China, Australia and India are ahead of us in this. Streamline permit processes. remove Thorium as source metal. Prioritize Thorium nuclear research. This should be our number one priority, for when the next ice age starts we will need all the CO2 in the air to sustain life..
  10. Put fusion power as important for the future but do not rush it, let the research and development be scientifically determined. However, hybrid Fusion -Thorium power generation should be developed.
  11. When Thorium power is built up and has replaced coal and gas fired power plants, then is the time to promote electric cars, not before. Let the early adopters buy the exciting electric cars, but do not subsidize them.
  12. Standard Nuclear Power plants should be replaced by Thorium powered nuclear plants, since they have only 0,01% of the really bad long term nuclear waste. For the time being do not decommission any nuclear plants before their time of obsolescence
  13. Start thinking about recovering CO2 directly from the air tp produce aviation fuel. This should be done when Thorium power has replaced coal and gas fired power plants.
  14. But most important, reverse real climate change, the desertification of the American Southwest. This can only be done by adding Thorium small modular reactors to the electric energy mix. Wind and solar will not do it, since they only provide power when the wind blows and the sun shines, not according to the electricity demand. My proposal is
  15. https://lenbilen.com/2022/04/09/the-transcontinental-aqueduct-a-realistic-way-to-save-lake-mead-and-reverse-the-desertification-of-the-american-southwest/ This aqueduct will cost about 350 Billion dollars, and solve the water needs for the lower American Southwest, triple the hydroelectric power storage capacity for the nation and go a long way to save the rapidly depleting aquifers. If this is not done American Southwest will become a desert in the not too distant future.
  16. When the Transcontinental aqueduct has begun to provide water to Texas, New Mexico, Arizona, California and Mexico it is time to build the Trans-Rocky-Mountain aqueduct. The Trans-Rocky-Mountain Aqueduct will save Lake Powell and Lake Mead, and rejuvenate the American South-west. This solution is expensive, but when all costs are included, it can deliver 3.6 to 6 Million acre-feet / year at a cost of $2,290 per acre-feet, check the calculations here. This is the solution that can be done in the shortest time.
  17. To help save the upper Ogallala aquifer and provide water to the thirsty Platte river watershed it is time to build a South Platte River aquifer. The river is drying up. The water will be taken from the Missouri river. This is a recent picture of the bone dry Platte River near Columbus Nebraska:

Something must be done. The wet areas are getting wetter because of pollution of land, air and rivers, and the dry areas are getting hotter and drier because of desertification. The beauty of these projects is that the Mississippi river is now cleaned up enough so that it can be done, the water supply is unlimited. The Mississippi River is our main barge transport river, and as such is already well regulated. The addition of these aqueducts will force the whole Mississippi River watershed community to more closely enforce water quality standards, and so lower the pollution in the Mexican Gulf.

The biggest cause of climate change is not rising CO2 levels but land use change, such as the desertification of the American Southwest.

Fear spreads up on Capitol Hill

The Climate change will break their will.

AOC: In Twelve years

our world disappears!

She acts as a Green New Deal shill.

Quote from Alexandria Occasio-Cortez in January 2019: “Millennials and Gen Z and all these folks that come after us are looking up, and we’re like, ‘The world is going to end in 12 years if we don’t address climate change, and your biggest issue is how are we gonna pay for it?’ ” she said. Congress has now finally put together a bill that will address climate change and add new taxes, so that it can be called the “Inflation Reduction Act”. While it will increase long term inflation, reduce growth, increase taxes and regulations, it’s attempt to solve climate change is particularly misplaced and will do more harm than good and ignore the real causes of climate change.

Let me explain.

We live in only one world. As a concerned citizen I realize we have immense environmental challenges before us, with water pollution; from plastics in the ocean, excess fertilizer in the rivers, poison from all kinds of chemicals, including antibiotics, birth control and other medicines flushed down the toilet after going through our bodies, animals fed antibiotics, pest control, weed control and so on. Increasing CO2 is not one of the problems, it will in fact help with erosion control, and allow us to feed more people on less agricultural land with proper management, and require less fertilizer and water to do so. In fact, proper water management is a larger problem, with some rivers no longer even reaching the ocean. All water is already spoken for, especially in the 10 to 40 degrees latitude, where most people live.

Allow me to be somewhat technical and give the background to why I know we will never experience the thermal runaway they are so afraid of.

Many years ago I worked at Hewlett Packard on an Atomic Absorption Detector. It was a huge technical success but a commercial failure, as it was too expensive to use for routine applications. However it found a niche and became the detector of choice when dismantling the huge nerve gas stockpiles remaining from the cold war. I was charged with doing the spectrum analysis and produce the final data from the elements. One day two salesmen came and tried to sell us  a patented device that could identify up to 21 different elements with one analysis. They had a detector that divided the visual band into 21 parts, and bingo, with proper, not yet “fully developed” software you could now analyze up to 21 elements with one gas chromatography analysis. What could be better? We could only analyze correctly four or five elements simultaneously. It turns out the elements are absorbing in the same wavelength bands, scientifically speaking they are not orthogonal, so software massaging can only go so far. It turned out that the promised new detector was inferior to what we already had and could only quantify three or 4 elements at the most. If elements are absorbing in the same frequency band they are called non-orthogonal, if they only absorb in unique bands they are orthogonal.

In the atmosphere the two most important greenhouse gases are water vapor and CO2 with methane a distant third. Water vapor is much more of a greenhouse gas everywhere except near the tropopause high above the high clouds and near the poles when the temperature is below 0 F, way below freezing. A chart shows the relationship between CO2 and water vapor:

Image result for h20 and co2 as greenhouse gases

Source: http://notrickszone.com/2017/07/31/new-paper-co2-has-negligible-influence-on-earths-temperature/

Of particular interest are the round dots representing the South Pole. We have really good global data for over 60 years. The Amundsen Scott – South Pole weather station, the average temperature of Winter season 2021 (April 2021 – September 2021) reached only -61,0°C / -78°F, and at this temperature CO2 is the dominant greenhouse gas by more than a factor of ten more important than water vapor. We have reliable measurements for the temperature change at the South Pole since 1957. During this time CO2 gas increased 31% to 413ppm, Methane increased 16% to 1.85 ppm and Nitrous oxide decreased, but this is a gas mostly confined to urban areas, and is now below 0.05 ppm worldwide. With CO2 increasing by 31% and water vapor negligible one would expect a temperature rise over 64 years of 0.65 C, or one degree Celsius warmer per century according to extrapolated lab measurements. This is the observed trend:

With 2021 value included the temperature trend is two degrees Celsius cooler per century!

At the South Pole snowfall is negligible in the winter, and for the whole year it is only 1.3 inches. No model would have predicted the cooling trend, so there must be other factors that are are more important, since real measurements beat models every time.

Even in Barrow, Alaska water vapor is the dominant greenhouse gas. Only at the South Pole (And North Pole) does CO2 dominate (but only in the winter).

All Climate models take this into account, and that is why they all predict that the major temperature increase will occur in the polar regions with melting icecaps and other dire consequences. But they also predict a uniform temperature rise from the increased forcing from CO2 and the additional water vapor resulting from the increased temperature.

This is wrong on two accounts. First, CO2 and H2O gas are nor orthogonal, that means they both absorb in the same frequency bands. There are three bands where CO2 absorbs more than H2O in the far infrared band, but other than that H2O is the main absorber. If H2O is 80 times as common as CO2 as it is around the equator, water vapor is still the dominant absorber, and the amount of CO2 is irrelevant.

Secondly gases cannot absorb more than 100% of the energy available in any given energy wavelength! So if H2O did absorb 80% of the energy and CO2 absorbed 50%, the sum is not 130%, only 90%. (0.8 + 0.5×0,2 or 0.5 + 0.8×0.5). In this example CO2 only adds one quarter of what the models predict.

How do I know this is true? Lucky for us we can measure what increasing CO2 in the atmosphere has already accomplished. For a model to have credibility it must be tested with measurements, and pass the test. There is important evidence suggesting the basic story is wrong. All greenhouse gases work by affecting the lapse rate in the tropics. They thus create a “hot spot” in the tropical troposphere. The theorized “hot spot” is shown in the early IPCC publications. (Fig A)

Fig. B shows observations. The hotspot is not there. If the hotspot is not there, the models must be wrong. So what is wrong with the models? This was reported in 2008 and the models still assume the additive nature of greenhouse gases, even to the point when more than 100% of the energy in a given band is absorbed.

How about Methane? Do not worry, it absorbs nearly exclusively in the same bands as water vapor and has no measurable influence on the climate.

But it will get warmer at the poles. That will cause melting of the ice-caps? Not so fast. When temperature rises the atmosphere can hold more water vapor, so it will snow more at higher latitudes. While winter temperatures will be higher with more snowfall, this will lower the summer temperatures until the extra snow has melted. And that is what is happening in the Arctics

As we can see from this picture, the winters were about 5 degrees warmer, but starting from mid April through early August temperatures were lower. It takes time to melt all the extra snow that fell because of the less cold air, able to contain more water vapor.

These are my suggestions

  1. Do not worry about increasing CO2 levels. The major temperature stabilizer is clouds, and they will keep the earth from overheating by reflecting back into space a large amount of incoming solar radiation. Always did, and always will, even when the CO2 concentration was more than 10,000 ppm millions of years ago. Ice ages will still come, and this is the next major climate change, maybe 3,000 years from now, probably less. Do not buy any more solar panels from China! China is by far the world’s largest polluter of real air pollution. They are planning to build
  2. Clean up rivers, lakes and oceans from pollution. This is a priority.
  3. Limit Wind turbine electric energy to areas not populated by large birds to save the birds. Already over 1.3 million birds a year are killed by wind turbines, including the bald and Golden Eagles that like to build their aeries on top of wind turbines. Above all, do not import any more wind turbine motors from China. They have severed all climate change cooperation with the U.S. Let them build a few less very polluting coal fired electric plants between now and 2030. China was planning to build 1171 additional coal plants.
  4. Do not build large solar concentration farms. They too kill birds.
  5. Solar panels are o.k. not in large farms, but distributed on roofs to provide small scale backup power.
  6. Exploit geothermal energy only in geologically stable areas.
  7. Where ever possible add peak power generation and storage capacity to existing hydroelectric power plants by pumping back water into the dams during excess capacity.
  8. Add peak power storage dams, even in wildlife preserves. The birds and animals don’t mind.
  9. Develop Thorium based Nuclear Power. Russia, China, Australia and India are ahead of us in this. Streamline permit processes. Prioritize research. This should be our number one priority, for when the next ice age starts we will need all the CO2 in the air to sustain life..
  10. Put fusion power as important for the future but do not rush it, let the research and development be scientifically determined. However, hybrid Fusion -Thorium power generation should be developed.
  11. When Thorium power is built up and has replaced coal and gas fired power plants, then is the time to promote electric cars, not before.
  12. Standard Nuclear Power plants should be replaced by Thorium powered nuclear plants, since they have only 0,01% of the really bad long term nuclear waste. For the time being do not decommission any nuclear plants before their time of obsolescence
  13. Start thinking about recovering CO2 directly from the air and produce aviation fuel. This should be done when Thorium power has replaced coal and gas fired power plants.
  14. But most important, reverse the real climate change, the desertification of the American Southwest. This can only be done by adding Thorium small modular reactors to the electric energy mix. Wind and solar will not do it, since they only provide power when the wind blows and the sun shines, not according to the electricity demand. My proposal is
  15. https://lenbilen.com/2022/04/09/the-transcontinental-aqueduct-a-realistic-way-to-save-lake-mead-and-reverse-the-desertification-of-the-american-southwest/ This aqueduct will cost about the same, or around 350 Billion dollars, and solve the water needs for the lower American Southwest, triple the hydroelectric power storage capacity for the nation and go a long way to save the rapidly depleting aquifers. If this is not done American Southwest will become a desert in the not too distant future. We are getting close.
  16. When the Transcontinental aqueduct has begun to provide water to Texas, New Mexico, Arizona, California and Mexico it is time to build the Trans-Rocky-Mountain aqueduct. The Trans-Rocky-Mountain Aqueduct will save Lake Powell and Lake Mead, and rejuvenate the American South-west. This solution is expensive, but when all costs are included, it can deliver 3.6 to 6 Million acre-feet / year at a cost of $2,290 per af, high, check the calculations here. This is the solution that can be done in the shortest time.
  17. To help save the Ogallala aquifer and provide water to the thirsty Platte river watershed it is time to build a South Platte River aquifer. It is drying up. This is a recent picture of the bone dry Platte River near Columbus Nebraska:

Something must be done. The wet areas are getting wetter because of pollution of land, air and rivers, and the dry areas are getting hotter and drier because of desertification.

Climate change is real, but no climate emergency, and rising CO2 is not the culprit. It is about land use, water use changes and real pollution.

When the Supreme Court ruled that an agency such as the EPA does not have the authority to regulate CO2 emissions by fiat. Only Congress can enact a law to do this. I pointed out that CO2 is not the culprit gas that causes climate change, and as an example I used the South Pole weather station, having a 60+ year of good statistics, and it showed that the temperature trend is -2C per century. One would have expected a rise, since at the average winter temperature of -61C water vapor is nearly non-existent, and CO2 is the dominant greenhouse gas. One would have expected a one degree or more warming instead. This is one data point we are in a cooling trend,and indeed we are. The Greenland ice data shows it to be true:

Yet the current worldwide trend is a temperature increase. Note that the temperature models have increased the temperature increase with time from CIMP5 to CIMP6, and so diverging more and more from the HADCRUT4 data.

The overall worldwide temperature is increasing, but not at the rate the climate models suggest. The important thing is, where are the temperature increases? The South Pole winter temperatures are decreasing 2C per century, but summer temperatures are increasing ever so slightly. In the Arctic the situation is reversed. The winter temperatures have risen between 3C and 7C and vary widely from year to year, but the summer temperatures are slowly decreasing. The current temperature chart for the Arctic above 80 degrees latitude tells the story:

Notice the wild temperature swings in the winter, and the temperature stability below average in spring and summer.

There must be something with Climate change far more important than rising CO2 levels, and indeed there is. A couple of weeks ago I told a story of Dr Lovelock and his Gaya theory, and how he found out the air had much more DiMethylSulfide (DMS) than expected, and the molecules acted as condensation points for clouds. The DMS was generated by Phytoplankton, dinoflagellates and diatoms that contain chlorophyll and require sunlight in order to live and grow. Most phytoplankton are buoyant and float in the upper part of the ocean, where sunlight penetrates the water. Phytoplankton also require inorganic nutrients such as nitrates, phosphates, and sulfur which they convert into proteins, fats, and carbohydrates. If nutrients are too abundant it can lead to algae blooms, such as red tide. In that case all oxygen are consumed and the algae dies and leave a toxic mess. The areas where this occurs are near river outlets that contain too many nourishments. This is the case in the Mexican Gulf, the Eastern seaboard, the North Sea and the Baltic, as well as South Asia and East Asia. The inland areas will see more clouds and more rains, but not necessarily more severe storms. Flooding may increase though.

Far more troublesome is what happens to areas that do not experience an increase in clouds. The trouble starts a few hundred miles west of the Mississippi River in the Ogallala aquifer. This map shows changes in Ogallala water levels from the period before the aquifer was tapped to 2015.

Image credit: Nation Climate Assessment 2018

Going west to New Mexico things get worse. New Mexico depends on the monsoon rains starting in July and continues into the fall. They have a tendency to fail from time to time and sometimes many years in a row, they cannot be relied upon to water the thirsty earth. The grass and other vegetation dies, and when the rains come, they often cause flash floods that are very destructive to the soil, and leaves large areas barren. To illustrate what is happening take the Gila River. It starts in the Gila National Forest in New Mexico and flow through near Phoenix and ends i the Colorado River near the Mexico border. It used to have a flow of 1.3 million Acre-feet annually flowing seasonally through the Phoenix area. The Coolidge dam was built in 1930, all the land was taken by eminent domain, the Indians protested that some ancient burial grounds would be flooded, but at no avail. The dam was built, and a big disappointment it was. The evaporation from the San Carlos Lake was higher than the inflow for much of the year, co the total flow of the Gila river was greatly reduced. These are the numbers for the last ten years:

Only once in the last ten years has the lake been filled to even 25% of full capacity, and the last two years the lake has dried out during the most important growing season.All fish has died. The lake is totally useless even for recreational purposes, and nearly worthless for the Phoenix area as water supply. The Central Arizona Project has a capacity of providing 1.4 million Acre-feet a year, but has only been awarded a fraction of its capacity from the Colorado River, and since Lake Mead is drying up, the supply will be reduced to almost nothing.

Hoe dire is the situation? Arizona has a rising population, This chart shows it well:

Arizona has had a water problem since before the creation of the Arizona department of water resources. The farmers that had water rights took their allotment and expected a low price, say $100 per acre-ft, the cost of pumping it out of the ground. The municipal users don’t mind to pay $1,500 per acre-ft, after all, that is only 2 cents per gallon, so when the supply fails, the farmer is the loser.

So, where do the water supplies come from? These are official numbers from 2019

Since then the situation has gotten much worse. The Colorado River contribution is down by at least 30%, and will be cut down further when Lake Mead drops some more. It is already precariously close to dead pool. The Gila River water flow is zero during growing season, but the Salt River still delivers 300,000 A-f per year, all during growing season. So the in-state river flow is down by a half. This means that over half of Arizona’s water supply will come from drawing down the aquifers. This will reduce the river flows some more, the land will be dried up, and eventually the wells will dry up and Arizona will act more like a desert, with no cooling capacity left in the soil, the summer temperatures will be even hotter and dust storms will be common. The trees will die from drought and wildfires will increase. When the monsoon rains come, heavy flash floods will remove what little top soil is left. This is real climate change in the American Southwest.

If we concentrate on limiting CO2 emissions but ignore the real causes of climate change this is the future the American South-west can look forward to. If we took a fraction of the money earmarked to eliminate fossil fuel and use it instead to save the planet, in this case the American Southwest, then we’ll again make the American Southwest livable with enough water for 40 million people, and with a still functioning agriculture in the west, supplying food for many more people, plants and wildlife.

One of the problems leading to climate change is polluting rivers. Of the ten most polluting rivers in the world none are in Europe or the Americas, see map:

The main pollutant in these rivers is particle pollution such as plastic, but unprocessed sewage is prevalent.

Nitrogen pollution from agriculture is another problem, even in Europe and America. The Dutch farmers are up in arms over the draconian measures imposed by the Dutch government, praised on by Klaus Schwab and he New world Order leaders that want “The great reset”. This involves reducing the nitrogen content on the agricultural lands by 50, 75 and even 95% in certain areas, reduce cattle by 50% and a similar reduction in the pig population. The protest is joined by Germany, Poland, Italy and Spain (and maybe Australia). The protest is immense:

Government mandates cannot solve the nitrogen crisis. The best way to reduce the nitrogen pollution is to lower the nitrogen fertilizer from slightly above optimum to slightly below optimum. With fertilizer cost more than tripling this adjustment was going to be made anyhow. Plants have a remarkable ability to absorb the nitrogen, and with the rising CO2 levels they do so more efficiently. The optimum amount is different for every plot, and any farmer knows much better than any desk-bound bureaucrat how and when to sow, fertilize and reap.

In the eastern half of the U.S. water rights comes with the land, and since rainfall can lead to floods, water rights are water responsibilities. When a land owner disturbs the soil he must first put up a retaining sausage to stop erosion. Then he has to build a retainment basin to compensate for roofs and hardened surfaces, so the water will be retained on the property as much as possible. This will lessen floods. The farmers have to build shallow ditches adjacent to creeks and rivers to prevent agricultural runoffs. And fertilizing is only allowed when no thunderstorms or rains are expected

In the dry American southwest it is all about water rights. Land without water rights is nearly worthless. If a homeowner without water rights get caught putting a bucket under his downspout and uses the rain to water a newly planted thee, he can be fined. All water must be purchased. This is wrong. The water that rains on a piece of land belongs to the land and should return to the aquifer. The springs, forming creeks belong to the river and cannot be dammed. This will help restore the aquifiers, but the river flows will be diminished until the aquifers are restored, which may take a century. So before the water rights question can be righted and the aquifers restored we must

Build a TransContinental Aqueduct. This will solve the water needs for the upper Western Texas, New Mexico, Arizona, lower California, Mexico and the Lower Colorado River basin, and then

Build a Trans-Rocky Mountain aqueduct. This will solve some of the water needs for Oklahoma, Kansas, Colorado, upper New Mexico and the Upper Colorado river basin. To complete the trying to save the aquifers we also need to

Build a South Platte River aqueduct. This will solve the water needs for the greater Denver ares and help preserve the northern Ogallala aquifer.

The rise in CO2 is on balance positive, it has already helped to keep 2 billion people from starvation. With food famine coming the very worst thing we can do is declare a climate emergency and unilaterally reduce our electric supply eliminating much of our fossil fuel source to produce electricity and at the same time push electric cars.

Rising CO2 levels is only a very minor cause of climate change. Beside the sun, land use change, pollution, mining and depletion of aquifers are the major causes.

I have always been very interested in the environment. Nature teaches us so many lessons, the diversity of trees, birds, flowers and wildlife is breathtaking and I never cease to wonder. It would be a shame to destroy the beauty of it all. Yet we seem to make it worse by concentrating our effort by trying to limit CO2 emissions, rather than tackling the real and more urgent problems.

Let me first explain why I assert that rising CO2 levels, while real is only a minor player in the climate change equation.

The traditional way to approach this scientifically is making climate models. So far, nearly all, except the Russian model have failed to predict future temperature changes. IPCC is still failing.

The other approach is to take measurements, and it so happens that we have really good global data for over 60 years. The Amundsen Scott – South Pole weather station, the average temperature of Winter season 2021 (April 2021 – September 2021) reached only -61,0°C / -78°F, and at this temperature CO2 is the dominant greenhouse gas by more than a decade over water vapor. We have reliable measurements for the temperature change at the South Pole since 1957. During this time CO2 gas increased 31% to 413ppm, Methane increased 16% to 1.85 ppm and Nitrous oxide decreased, but this is a gas mostly confined to urban areas, and is now below 0.05 ppm. With CO2 increasing by 31% and water vapor negligible one would expect a temperature rise over 64 years of 0.65 C, or one degree Celsius warmer per century according to extrapolated lab measurements. This is the observed trend:

With 2021 value included the temperature trend is two degrees Celsius cooler per century!

At the South Pole snowfall is negligible in the winter, and for the whole year it is only 1.3 inches. No model would have predicted the cooling trend, so there must be other factors that are are more important, since real measurements beat models every time.

Ignoring the South Pole, the climate models are from time to time adjusted, and they suddenly showed a much higher rate of future temperature increases, in this case what is supposed to happen to global temperatures for a doubling of CO2 from pre-industrial times, from 270ppm to 540ppm.

Source: Mark D Zelinka et al. ” Causes of higher Climate sensitivity in CMIP6 models” Geophysical Research Letters.

There are two ways to approach this problem. The models make certain assumptions about the behavior of the changing atmosphere and model future temperature changes. This is the approach from IPCC for the last 34 years. These models all fail miserably when compared to actual temperature changes.

The other way i to observe what is actually happening to our temperature over time as the CO2 increases. We have over 60 years of excellent global temperature data, so with these we can see where, when and by how much the earth has warmed.

The most drastic temperature rise on earth has been in the Arctic above the 80th latitude. In the winter of 2018 it was 8C above the 50 year average. Since then it has come down to the more normal 4C increase. See charts from the Danish Meteorological Institute:

Summer: red, Jun,Jul, Aug. Winter: green, Dec, Jan, Feb Yearly: black

Note, there are no increase at all in the summer temperatures!

Spring: green, Mar, Apr, May. Fall: red, Sep Oct, Nov. Yearly: black

The fall temperature saw an increase of 4C and the spring temperature saw an increase of about 2.5C.

The 2022 winter saw an about 4c increase. The Spring temperatures have from the 10th of March were below or very close to the 1958 – 2002 average. Early Summer temperatures have so far been about 1C below normal. Source: DMI.

There seems to be no cause for immediate panic with the Arctic temperatures. If anything, they seem to moderate. In Antarctic on the other hand the temperatures seem to be decreasing! As we have seen before, the Amundsen Scott – South Pole weather station, the average temperature of Winter season 2021 (April 2021 – September 2021) reached only -61,0°C / -78°F, which is the coldest value in all-time history! This was 2,5°C /4.5°F degrees lower than the most recent 30-year average at this remote station.

Why are the temperatures not behaving like the models predict?

To get the answer we must study molecular absorption spectroscopy. IPCC and most scientists claim that the greenhouse effect is dependent on the gases that are in the atmosphere, and their combined effect is additive according to a logarithmic formula. This is true up to a certain point, but it is not possible to absorb more than 100% of all the energy available in a certain frequency band! For example: If water vapor absorbs 90% of all incoming energy in a certain band, and CO2 absorbs another 50% of the energy in the same band, the result is that 95% is absorbed, (90% + 50% * (100% – 90%)),  not 140%, (90% + 50%).

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency range s they absorb.

For this we will have to look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

The red area represents the observed amount of solar radiation that reaches the earth’s surface. the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is re-emitted. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 microns. Of them the 2.7 and 4.3 micron bands absorb where there is little black body radiation, the only band that counts is at 15 microns, and that is in a band where the black body radiation has its maximum. However it is also in a band where water vapor also absorb, not as much as CO2,only about 20% to 70% as much. The important thing is that in the frequency band of 14.5 to 15.5 micron CO2 absorbs all the energy available in that spectral range, and it also did it before industrialization when CO2 levels were one third less than today!

The grey area is the difference between total pre-industrial absorption and today, less than 5 % added absorption in the 13 to 17 micron band. Norice that total absorption from ground level to thermopause cannot exceed 100%

From this we can see that increasing CO2 levels is not the cause of climate change, only a very minor player. How about Methane?

Methane has only two major absorption bands, one at 3.3 microns, and the other at 8 microns. The 3,3 micron band is where incoming radiation is negligible, and so is outgoing black-body radiation. The 8 micron band is where water vapor is dominant, so Methane turns out to be the don’t care gas.

Water vapor or absolute humidity is highly dependent on the temperature of the air, so at 30C there may be 50 times as much water vapor, at 0C there may be ten times as much water vapor, and at -25C there is more CO2 than water vapor. At those low temperatures the gases are mostly additive. In the tropics with fifty times more water vapor than CO2, increased CO2 has no influence on the temperature whatsoever. Temperature charts confirm this assertion:

Here the temperature in the tropics displays no trend whatsoever. It follows the temperature of the oceans, goes up in an el niño and down in a la niña. The temperature in the southern hemisphere shows no trend. In the northern temperate region there is a slight increase, but the great increase is occurring in the Arctic. There is no increase in the Antarctic yet even though the increase in CO2 is as great in the Antarctic and the winter temperature in the Antarctic is even lower than in the Arctic. So CO2 increase cannot be the answer to the winter temperature increase in the Arctic.

There is an obvious answer. When temperatures increase the air can and will contain more moisture and transport this moisture from the tropics all the way to the arctic, where it ends up as snow. Is the snow increasing in the Arctic?

Let us see what the snow statistics show. These are from the Rutgers snow lab.

The fall snow extent is increasing, and has increased by more than 2 percent per year.

The winter snowfall has also increased but only by 0.04 percent per year. The snow covers all of Russia, Northern China, Mongolia, Tibet, Kashmir and northern Pakistan, Northern Afghanistan, Northern Iran, Turkey, most of Eastern Europe, Scandinavia, Canada, Alaska, Greenland and part of Western, Eastern and Northern United States.

Jan 16,2022

In the spring on the other hand the snow pack is melting faster, about 1.6 percent less spring snow per year. One of the major reasons for an earlier snow melt is that the air is getting dirtier, especially over China, and to some extent Russia. The soot from burning coal, wood and peat, and from mining dust changes the albedo of the snow. The soot is visible on old snow all the way up to the North Pole. The other reason is that the North Pole is getting warmer. In the fall and winter it is mostly due to increased snowfall, but in the spring, as soon as the temperatures rise over the freezing point, melting occurs earlier. But it takes longer time to melt the increasing snow, so the Summer temperatures remain unchanged or lower.

So the warming of the poles, far from being an impending end of mankind as we know it, may even be beneficial. Warmer poles in the winter means less temperature gradient between the poles and the tropics, leading to less severe storms. They will still be there, but less severe.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, done with only the fertilizer of CO2, the earth can now keep another 2 billion people from starvation, not to mention what good it does for plants and wildlife.

So CO2 is not the cause for climate change.

Yet

we face enormous environmental challenges. The American Southwest is slowly becoming a desert, the aquifers are being depleted, Lake Mead and Lake Powell will be empty in a few years if nothing is done. Our total energy use is increasing:

In 2021 solar energy amounted to 1,44% and wind power another 3.24% of total energy production. Hydroelectric power is declining because of the drought in the American Southwest. It used to be of great use for peak power generation. Lake Mead and Lake Powell are for all practical purposes unusable for more peak power generation. Biomass is pretty much peaked out. The use of of some of our best agricultural soil to grow corn and make ethanol is folly. When corn sugar is made into ethanol 48% of its weight is fermented as CO2, and one third of the total energy is gone. Maize growing is one of the most demanding crops, depleting the soil of more nutrition than other grains, needing the most fertilizer, which is made from petroleum products and other energy. It has been called “the syphilis of the soil” because of erosion problems.

The electricity production is but a subset of total energy consumption.

Source EIA

There is a great push to make all new cars, pick ups, delivery trucks, city buses and local trains electric by the year 2030. This does not seem to be incorporated into the eia plans. The “new green energy” plan is to have us carbon neutral by 2050. I don’t see how it can be done unless we take a radically different approach. Texas and California already has all the wind and solar power they can handle. To build it up further it must be complemented with energy batteries to store enough energy for when the wind doesn’t blow and the sun doesn’t shine. These energy batteries require an enormous amount of mining to extract the Lithium needed to make them. Lithium is already in high demand as batteries for vehicles. However, battery technology is rapidly developing, so it may still be possible to expand battery power for the grid. For now, most peak power and reserve power is supplied by natural gas.

A proposal to develop the electric grid, our nation’s transportation needs and reversing the desertification of the American Southwest.

Build a TransContinental Aqueduct. This will solve the water needs for the upper Western Texas, New Mexico, Arizona, lower California, Mexico and the Lower Colorado River basin.

Build a Trans-Rocky Mountain aqueduct. This will solve some of the water needs for Oklahoma, Kansas, Colorado, upper New Mexico and the Upper Colorado river basin.

Build a South Platte River aqueduct. This will solve the water needs for the greater Denver ares and help preserve the noorthern Ogallala aquifer.

This cannot be solved unless there will be a deep commitment to Nuclear power, streamline government permit processes and let private industry find the best solutions without government playing favorites and slowing down the process. Regular U235 power is not sufficient for this, Only Thorium power will do, and there are many reasons for it. Here are 30 of them:

 1. A million year supply of Thorium available worldwide.

 2. Thorium already mined, ready to be extracted.

 3. Thorium based nuclear power produces 0.012 percent as much TRansUranium waste products as traditional nuclear power.

 4. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.

 5. Thorium nuclear power is only realistic solution to power space colonies.

 6. Radioactive waste from an Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick.

 7. Thorium based nuclear power is not suited for making nuclear bombs.

 8. Produces isotopes that helps treat and maybe cure certain cancers.

 9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.

10. Molten Salt Liquid Fluoride Thorium Reactors cannot have a meltdown, the fuel is already molten, and it is a continuous process. No need for refueling shutdowns.

11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

12. Atmospheric pressure operating conditions, no risk for explosions. Much safer and simpler design.

13. Virtually no spent fuel problem, very little on site storage or transport.

14. Liquid Fluoride Thorium Nuclear reactors scale beautifully from small portable generators to full size power plants.

15. No need for evacuation zones, Liquid Fuel Thorium Reactors can be placed near urban areas.

16. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

17. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

18. Russia has an active Thorium program.

19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

 20. China is having a massive Thorium program.

21. United States used to be the leader in Thorium usage. What happened?

22. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

23. With a Molten Salt Reactor, accidents like Chernobyl are impossible.

24. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

25. Will produce electrical energy at about 4 cents per kWh.

26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles.

27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed.

28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

29. President Donald J. Trump on Jan. 5 2021 issued an Executive Order on Promoting Small Modular Reactors for National Defense and Space Exploration. Only Liquid fluoride thorium reactors can meet all the needs.

30. We have to switch from Uranium to Thorium as nuclear feed-stock. We are running out of domestic Uranium.

My favorite Thorium power plant would be a 100 MW Liquid Fluoride Thorium Reactor (LFTR). It is also called a Small Modular Reactor (SMR). It is small enough that all core elements will fit in three standard truck containers, made on an assembly line. It can came in many forms, one is a normal fast breeder reactor, another is adapted to burn nuclear waste. The cost for these reactors, when built on an assembly line will be less than $2 per Watt. They can be placed anywhere, since they are inherently safe, no need for an evacuation zone. Since they are operating at 500C temperature with either gas or liquid lead as heat transfer media there is no need for water as a cooling medium. The only thing better would be fusion power, but that is at least 20 years away, but it is coming. These are exciting times!

The cause of Climate Change. If it is rising CO2 levels we are all doomed. Controlling CO2 is destined to fail! Yet there is hope.

India is reopening 100 coal mines to ensure that their electrification program stays on course in the face of new realities. International coal prices has more than doubled since the start of 2022, so coal mining is again profitable.

One would think that the world is trying to reduce the number of coal plants. Not so!

This does not include the developing world that is just getting started with, you guessed it, coal plants!

Australia has at least one ally in trying to save the world, the United states of America! California has already eliminated their coal plants, but they are also a great importer of electricity, much of it produced from coal. In the next ten year the U.S. utilities plan to shut down or change the fuel on over 200 coal fired plants, 48 in 2022 alone. Meanwhile , coal is getting scarce. There will be spot shortages this year.

There will be brownouts and rotating blackouts this summer, especially in California and the mid-west.

Natural Gas prices has more than doubled from around $3 per Mega BTU to over $8, while spot price in Europe is over $26 per MBTU. To quote Barack Obama: “Electricity prices will naturally skyrocket”. This means electricity prices have only begun their rise.

The National Electric grids are aging and under increasing stress. The Biden administration has one solution. Commandeering American industry to make more solar panels with components made nearly exclusively from China and lower the import tariffs on solar panel components. California is already producing too much solar power if the wind is also blowing, but not during times of greatest demand, leading to a desperate need for pumped storage or large, very expensive battery banks. California has already given its first warning: Don’t charge your electric vehicles now, or the whole grid will go down. See here.

Yet there is hope. We can switch our electric grid to nuclear energy, but not the dominant Uranium 235 nuclear plants that requires evacuation zones, lots of cooling water and a large regulatory overhead to ensure their safety. No, instead go back to the original source of nuclear power, before making nuclear bombs became the driving source of nuclear development. Thorium based nuclear power, especially the Liquid Fluoride molten salt Thorium Reactor (LFTR). It breeds more fuel than it uses by about 3%, and it generates 0.01% of the nuclear waste of a Uranium 235 plant. It is more efficient and inherently safe. My preference would be to make them in an assembly line and deliver them on standard trucks rather than build them on site. LFTR reactors does not need water for cooling. My preference would be a 100 MW reactor with the molten salt containing the fissile material separated from the cooling system, which could be either gas or molten lead. They could then be spread out over the country with no need for water, be placed near population centers since there is no need for evacuation zones. This would make it possible to have local grids, eliminating the need to expand the national grid.

And with an assembly line production the core units can be delivered in three standard size containers. The total cost including power generation and the permanent enclosure will be less than two dollars per watt, and fuel cost is essentially nil, since Thorium is already mined in excess quantities in rare earth mining.

I do want to save coal for important uses, such as making chemicals and fertilizer, and in the future to produce aviation fuel. By all means, switch to electric vehicles, but not until the electric grid is converted from Coal and Natural Gas to nuclear!

This is insanity. Stop downblending our remaining U233 NOW!

This is insanity. In 2011 the Oak Ridge Laboratories had a stockpile of 1400 kg U 233. They have been busy downblending it into depleted uranium to render it useless, and there is now only about 450 kg left.

Check out this video and see if you will get as upset as I did.

There is one minor error in the video. The Thorium-U233 reactors also produce Plutonium, but it only produces Plutonium238, which is needed for space exploration. We are out of Pu238, only Russia has some left.

The situation:  The Department of Energy had 1400 Kg Uranium-233 stored at Oak Ridge National Lab. They are in process of downgrading it to natural uranium by downblending it with depleted uranium. They need 200 tons of depleted uranium to do the task, rendering it unusable for anything.

The decommissioning was approved in 2003 and in 2012 130 million had been spent, before the actual downblending started.

Stop the decommissioning immediately. Build our own Liquid Fluoride Thorium Nuclear Reactor and over time get 600 million dollars worth of electric power and 45g of Plutonium-238. We are out of Pu-238 and can do no more planetary exploration satellites.

The deep space satellites all had Pu-238 power sources. Only Russia has Pu-238 left, and the U.S. was banking on getting it for a friendship price. In addition there are significant unique medical applications in treatment of cancer that can be obtained by radiation from the byproduct of the Thorium process. Below are pictures of the Thorium process and what a Thorium Power plant might look like. (4)

The Plutonium in the Uranium cycle is PU239 and higher, all nasty stuff.
The LFTR does not use water, can be deployed everywhere, even in space.

The Trans-Rocky-Mountain Aqueduct; Cost estimates. Will it pay for itself?

To begin cost estimates, the model used is the cost for the Arizona central project. The waterway was constructed 1974 to 1993 at a cost of 4.7 billion dollars. In 2022 dollars that would be about 13.5 billion. The cost for the canal would be about 12.6 billion and 900 million for the pumping stations. The average size of the aqueduct in its beginning is 80 feet across the top and 24 feet across the bottom and the water is 16.5 feet deep. The concrete is 3.5 inches thick and, in some areas, it is reinforced with steel rebars. It is 336 miles long from Lake Havasu City to Tucson with a total lift of over 2,900 feet. The capacity starts out at over 2.2 million acre-ft per year, diminishing as the drop-off point occurs, and the total pumping of 1.4 million acre feet of water is lifted by up to 2,900 feet by 14 pumping stations using 2,500 GWh of electricity each year. The pumping stations have a total pumping capacity of 240 MW. It has a 7 mile long, 22 feet diameter tunnel from Lake Havasu to the beginning of the waterway.

The Trans-Rocky-Mountain aqueduct is much bigger: The The average size of the aqueduct in its beginning is 160 feet across the top and 80 feet across the bottom and the water is 35 feet deep. The concrete is 4 inches thick and, in most areas, it is reinforced with steel rebars. The concrete used is 4,500 cu yd per mile. It will cost about 2.5 times as much per mile as the ACP, so the total cost for the Trans-Rocky-Mountain Aqueduct will be ((12.6x 2.5 : 336) x 480) = 45 billion dollars. Like the CAP, it will have an 8 mile tunnel, and its diameter will be 48 feet. This cost estimate is probably high, since eminent domain costs will be minimal; all the dams already exist and are paid for, the Arkansas river is there, complete with dams; and land for all the reservoirs are already litigated and settled. The canal will go through sparsely inhabited land.

The cost of building 17 additional small dams in the Arkansas River will be on the order of $120 million per dam, for a total of $2 Billion.

There will be a total of 7.4 GW of pumped energy needed and 200 MW of base power generated. To get the aqueduct operational at 6 MAF/year it requires 7.4 GW of energy. Pumping cost capital is about $ 1.30 per watt, so the minimum pumping capital cost is 9.6 Billion dollars.

The Liquid Fluoride Thorium Reactors proposed is 100 MW units. so called Small Modular Reactors (SMR) The reactor core assemblies are small enough so they can be produced on an assembly line and delivered via truck. There are 3 assemblies needed, the reactor, the safe shutdown unit and the reprocessing and separation unit. The whole building can be built for $ 230 million. To complete the installation costs, add another # 30 million per unit. The aqueduct needs 74 units. The initial capital cost for grid access and minimum flow is $19 billion.

To sum it up,the capital cost for a flow of 6 MAF is (45 +2 + 9.6 + 19) = 75.6 billion dollars. The amount of water in the aqueduct when filled is 230,000 acre-feet and will take 1.1 TWh of electricity to fill, or about $35,000dollars at 3 c/kWh base rate.

When the electricity demand requires peak power, the pumps are turned off, and electricity will be sold back to the grid, at peak rate.

Solar power and wind power will also power the pumps, and they will lessen the demand for nuclear reactors. But the remaining reactors will still be needed, or peak power will still have to be supplied by natural gas, or coal when the sun doesn’t shine and the wind doesn’t blow.

In short: assuming a 50 year amortization plan for the aqueduct, and money available at 2%, , it will cost 3 billion a year in capital cost to deliver 6 MAF water from the Mississippi River to Lake Powell or any point in between, or $2,000 per acre-ft. Add to that $240 for electricity and another $50 per acre-ft in overhead and maintenance, the cost will be $2,290 per acre-ft.

The Rocky Mountains places are ideal for wind and solar power, but they need to store the energy when the sun is not up or doesn’t shine, or the wind doesn’t blow. Right now that is provided by coal and natural gas. Conventional nuclear power is best for use as base power only, so this Trans-Rocky-Mountain aqueduct will provide up to 7.4 GW of pure virtual pumped power storage, the LFTR nuclear power plants will provide the energy by shutting off the pumping of water in the aqueduct when the need arises, and instead provide another up to 7.4 GW of virtual pumped storage power. The beauty of this is that the pump response is instantaneous, so the grid can be really finetuned to meet the exact power needs.

Leg 2 of the Transcontinental Aqueduct: From the Robert S. Kerr Lock and dam to the Eufaula Dam on the Canadian River.

The length of Leg 2 is 20 miles on the Robert S Kerr reservoir and 22 miles on the Canadian river.

Elevation 458′

The Robert S Kerr reservoir has an area of 43,000 acres and its elevation is regulated by the McClellan-Kerr Arkansas River Navigation System. This means that the water can be pumped up or released as long as it is coordinated for the whole canal system. This also means that the water flow can be stopped and the power normally used to pump up water can be used as peak power, which can come in handy on a hot humid day with no sun and no wind and every air conditioner in the area is going full blast to take out the oppressive humidity.

The part of the aqueduct going up the Canadian river will have 3 20 ft dams with concrete spillways, each with a 20,000 cfs reversible flow pumping station. The map:

The dam will have a 20,000 cfs pumping station added lifting water 87 ft.

The Eufaula Dam.
The Eufaula dam
Riverbed at 498′ conservation pool at 585′

The total power consumption in this stage will be up to 265 MW. The preferred power plant will be 3 100 MW LFTR SMRs.

30. We have to switch from Uranium to Thorium as nuclear feed-stock. We are running out of domestic Uranium.

Uranium is the feed-stock for nuclear power. It is also the material necessary to make nuclear bombs and making isotopes for medicinal and industrial uses.

The United States has 245,000 tons of Uranium reserves recoverable at less than $100 per kilogram, 1.9% of the world total. The price of uranium oxide is today about $80 per kilogram. This is about 12.5 years worth of domestic production, and as the great conservationist Sarah Palin used to quip, “when it is gone, it’s gone.”

The United States has, as of 2019, mined 444,500 tons of Uranium, or about 13% of the world total.

The United States consumed in 2019 19,570 tons of Uranium, about 23% of the world total, about 99.6% of which was imported. This is a great strategic vulnerability.

Which brings up the following question: Why did the Obama administration sell 20% of our proven reserves of this strategically important material to Russia?

It is of utmost importance to immediately restart the development of nuclear reactors that use Thorium as its feed-stock. Uranium based nuclear power can never fill our long term energy needs