The Transcontinental aqueduct at the starting point will have a carrying .capacity of 15 million acre-ft per year, or 21,000 cubic feet per second on average. Maximum flow will be 26,500 cfs, allowing the power generators to supply peak power to the grid for up to 5 hours per day instead of pumping water.

The starting point of the aqueduct is where the Red river empties out in the Atchafalaya river, and has a Mississippi River diversion canal. The elevation at the starting point is 7 feet, and the dam and 32 desilting basins of size 300 x 600 feet with a depth of 20 feet will be located in the upper part of the never used West Atchafalaya Floodway. From there the water will be collected and the aqueduct will start going westward.

The Mississippi River flood control Morganza spillway is south of the Atchafalaya river diversion, and will not interfere. The place chosen is ideal to relieve some of the Mississippi river flow. Even in the lowest Mississippi flow in a drought year this diversion has sufficient flow to divert 26,500 cfs from the river.

The first leg of the aqueduct is 360 miles long and is an open water river with pumping stations whenever the river has to rise at least 30 feet. The river runs by gravity until it has sunk about 15 feet which is about 6.2 miles downstream. Since endpoint is at 548 feet elevation this requires lifting the water about 1300 feet. During the course of the path the aqueduct crosses the Sabine River south of the Toledo Bend Reservoir, going through Richland-Chambers reservoir and Navarro Mills lake; following the best climb it crosses the Neches River and the Trinity River following the geologically best way until it reaches Aquilla Lake. The aqueduct is quite substantial, it will carry about 80% more water than the All American Canal, seen below under construction. This canal has a drop of about 2.2 feet per mile to accommodate maximum flow.

Pumping 26,500 cfs water through the aqueduct requires 3 Gigawatts of power when rounding up for turbine losses. This can be accomplished by thirty 100 MW LFTR reactors, also being able to provide up to 3 GW of peak power for 5 hours/day on demand.

The end point for stage 1 of the channel is Aquilla lake, elevation 548 feet. It has a storage capacity of 100,000 acre-ft, about a day’s worth of storage.