Why Thorium? 7. Thorium nuclear power is the only realistic solution to power space colonies.

Thorium nuclear power is the only realistic solution to power space colonies. To form space colonies, power has to be provided to sustain the colony. This means that Liquid Fluoride Thorium Reactors  (LFTR) have to be fully developed and operational here on earth before serious space colony development can even begin. It need to get started in earnest NOW!

Kirk Sorensen has provided an intriguing teaser on the case for Thorium nuclear energy.

Watch it and enjoy!

The Thorium Energy security act SB 4242a

This is insanity. In 2011 the Oak Ridge Laboratories had a stockpile of 1400 kg U 233. They have been busy downblending it into depleted uranium to render it useless, and there is now only about 450 kg left.

The bill is introduced. It should be immediately passed in the Senate, and be passed in the house without amendments. Any delay is critical. It is that important. We gave the technology to the Chinese so they can build up their naval fleet with molten salt Thorium nuclear power. Meanwhile we still have some u-233 left, worth billions as a National Security asset. At the very least, we must stop downblending immediately, even before the bill is passed.

Here is the bill itself. The summary is not yet written, but the bill is introduced.

117th CONGRESS
2d Session

S. 4242

To provide for the preservation and storage of uranium-233 to foster development of thorium molten-salt reactors, and for other purposes.


IN THE SENATE OF THE UNITED STATES

May 18 (legislative day, May 17), 2022

Mr. Tuberville (for himself and Mr. Marshall) introduced the following bill; which was read twice and referred to the Committee on Energy and Natural Resources


A BILL

To provide for the preservation and storage of uranium-233 to foster development of thorium molten-salt reactors, and for other purposes.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled,

SECTION 1. Short title.

This Act may be cited as the “Thorium Energy Security Act of 2022”.

SEC. 2. Findings.

Congress makes the following findings:

(1) Thorium molten-salt reactor technology was originally developed in the United States, primarily at the Oak Ridge National Laboratory in the State of Tennessee under the Molten-Salt Reactor Program.

(2) Before the cancellation of that program in 1976, the technology developed at the Oak Ridge National Laboratory was moving steadily toward efficient utilization of the natural thorium energy resource, which exists in substantial amounts in many parts of the United States, and requires no isotopic enrichment.

(3) The People’s Republic of China is known to be pursuing the development of molten-salt reactor technology based on a thorium fuel cycle.

(4) Thorium itself is not fissile, but fertile, and requires fissile material to begin a nuclear chain reaction. This largely accounts for its exclusion for nuclear weapons developments.

(5) Uranium-233, derived from neutron absorption by natural thorium, is the ideal candidate for the fissile material to start a thorium reactor, and is the only fissile material candidate that can minimize the production of long-lived transuranic elements like plutonium, which have proven a great challenge to the management of existing spent nuclear fuel.

(6) Geologic disposal of spent nuclear fuel from conventional nuclear reactors continues to pose severe political and technical challenges, and costs United States taxpayers more than $500,000,000 annually in court-mandated payments to electrical utilities operating nuclear reactors.

(7) The United States possesses the largest known inventory of separated uranium-233 in the world, aggregated at the Oak Ridge National Laboratory.

(8) Oak Ridge National Laboratory building 3019 was designated in 1962 as the national repository for uranium-233 storage, and its inventory eventually grew to about 450 kilograms of separated uranium-233, along with approximately 1,000 kilograms of mixed fissile uranium from the Consolidated Edison Uranium Solidification Program (commonly referred to as “CEUSP”), divided into approximately 1,100 containers.

(9) The Defense Nuclear Facilities Safety Board issued Recommendation 97–1 (relating to safe storage of uranium-233) in 1997 because of the possibility of corrosion or other degradation around the storage of uranium-233 in a building that was built in 1943.

(10) In response, the Department of Energy published Decision Memorandum No. 2 in 2001 concluding that no Department of Energy programs needed uranium-233 and directed that a contract be placed for disposition of the uranium-233 inventory and decommissioning of its storage facility.

(11) The Department of Energy awarded a contract for the irreversible downblending of uranium-233 with uranium-238 and its geologic disposal in Nevada, which downblending would create a waste form that would pose radiological hazards for hundreds of thousands of years, rather than to consider uranium-233 as a useful national asset.

(12) All 1,000 kilograms of CEUSP uranium-233-based material have been dispositioned (but not downblended) but those containers had little useful uranium-233 in them. The majority of separated and valuable uranium-233 remains uncontaminated by uranium-238 and suitable for thorium fuel cycle research and development. That remaining inventory constitutes the largest supply of uranium-233 known to exist in the world today.

(13) The United States has significant domestic reserves of thorium in accessible high-grade deposits, which can provide thousands of years of clean energy if used efficiently in a liquid-fluoride reactor initially started with uranium-233.

(14) Recently (as of the date of the enactment of this Act), the Department of Energy has chosen to fund a series of advanced reactors that are all dependent on initial inventories and regular resupplies of high-assay, low-enriched uranium.

(15) There is no domestic source of high-assay, low-enriched uranium fuel, and there are no available estimates as to how long the development of a domestic supply of that fuel would take or how expensive such development would be.

(16) The only viable source of high-assay, low-enriched uranium fuel is through continuous import from sources in the Russian Federation.

(17) The political situation with the Russian Federation as of the date of the enactment of this Act is sufficiently uncertain that it would be unwise for United States-funded advanced reactor development to rely on high-assay, low-enriched uranium since the Russian Federation would be the primary source and can be expected to undercut any future United States production, resulting in a dependency on high-assay, low-enriched uranium from the Russian Federation.

(18) The United States has abandoned the development of a geologic repository at Yucca Mountain and is seeking a consenting community to allow interim storage of spent nuclear fuel, but valid concerns persist that an interim storage facility will become a permanent storage facility.

(19) Without a closed fuel cycle, high-assay, low-enriched uranium-fueled reactors inevitably will produce long-lived wastes that presently have no disposition pathway.

(20) The United States possesses enough uranium-233 to support further research and development as well as fuel the startup of several thorium reactors. Thorium reactors do not require additional fuel or high-assay, low-enriched uranium from the Russian Federation.

(21) Continuing the irreversible destruction of uranium-233 precludes privately funded development of the thorium fuel cycle, which would have long term national and economic security implications.

SEC. 3. Sense of Congress.

It is the sense of Congress that—

(1) it is in the best economic and national security interests of the United States to resume development of thorium molten-salt reactors that can minimize long-lived waste production, in consideration of—

(A) the pursuit by the People’s Republic of China of thorium molten-salt reactors and associated cooperative research agreements with United States national laboratories; and

(B) the present impasse around the geological disposal of nuclear waste;

(2) that the development of thorium molten-salt reactors is consistent with section 1261 of the John S. McCain National Defense Authorization Act for Fiscal Year 2019 (Public Law 115–232; 132 Stat. 2060), which declared long-term strategic competition with the People’s Republic of China as “a principal priority for the United States”; and

(3) to resume such development, it is necessary to relocate as much of the uranium-233 remaining at Oak Ridge National Laboratory as possible to new secure storage.

SEC. 4. Definitions.

In this Act:

(1) CONGRESSIONAL DEFENSE COMMITTEES.—The term “congressional defense committees” has the meaning given that term in section 101(a) of title 10, United States Code.

(2) DOWNBLEND.—The term “downblend” means the process of adding a chemically identical isotope to an inventory of fissile material in order to degrade its nuclear value.

(3) FISSILE MATERIAL.—The term “fissile material” refers to uranium-233, uranium-235, plutonium-239, or plutonium-241.

(4) HIGH-ASSAY, LOW-ENRICHED URANIUM.—The term “high-assay, low-enriched uranium” (commonly referred to as “HALEU”) means a mixture of uranium isotopes very nearly but not equaling or exceeding 20 percent of the isotope uranium-235.

(5) TRANSURANIC ELEMENT.—The term “transuranic element” means an element with an atomic number greater than the atomic number of uranium (92), such as neptunium, plutonium, americium, or curium.

SEC. 5. Preservation of uranium-233 to foster development of thorium molten-salt reactors.

The Secretary of Energy shall preserve uranium-233 inventories that have not been contaminated with uranium-238, with the goal of fostering development of thorium molten-salt reactors by United States industry.

SEC. 6. Storage of uranium-233.

(a) Report on long-Term storage of uranium-233.—Not later than 120 days after the date of the enactment of this Act, the Secretary of Energy, in consultation with the heads of other relevant agencies, shall submit to Congress a report identifying a suitable location for, or a location that can be modified for, secure long-term storage of uranium-233.

(b) Report on interim storage of uranium-233.—Not later than 120 days after the date of the enactment of this Act, the Chief of Engineers shall submit to Congress a report identifying a suitable location for secure interim storage of uranium-233.

(c) Report on construction of uranium-233 storage facility at Redstone Arsenal.—Not later than 240 days after the date of the enactment of this Act, the Chief of Engineers shall submit to Congress a report on the costs of constructing a permanent, secure storage facility for uranium-233 at Redstone Arsenal, Alabama, that is also suitable for chemical processing of uranium-233 pursuant to a public-private partnership with thorium reactor developers.

(d) Funding.—Notwithstanding any other provision of law, amounts authorized to be appropriated or otherwise made available for the U233 Disposition Program for fiscal year 2022 or 2023 shall be made available for the transfer of the inventory of uranium-233 to the interim or permanent storage facilities identified under this section.

SEC. 7. Interagency cooperation on preservation and transfer of uranium-233.

The Secretary of Energy, the Secretary of the Army (including the head of the Army Reactor Office), the Secretary of Transportation, the Tennessee Valley Authority, and other relevant agencies shall—

(1) work together to preserve uranium-233 inventories and expedite transfers of uranium-233 to interim and permanent storage facilities; and

(2) in expediting such transfers, seek the assistance of appropriate industrial entities.

SEC. 8. Report on use of thorium reactors by People’s Republic of China.

Not later than 180 days after the date of the enactment of this Act, the Comptroller General of the United States, in consultation with the Secretary of State, the Secretary of Defense, and the Administrator for Nuclear Security, shall submit to Congress a report that—

(1) evaluates the progress the People’s Republic of China has made in the development of thorium-based reactors;

(2) describes the extent to which that progress was based on United States technology;

(3) details the actions the Department of Energy took in transferring uranium-233 technology to the People’s Republic of China; and

(4) assesses the likelihood that the People’s Republic of China may employ thorium reactors in its future navy plans.

SEC. 9. Report on medical market for isotopes of uranium-233.

Not later than 180 days after the date of the enactment of this Act, the Director of the Congressional Budget Office, after consultation with institutions of higher education and private industry conducting medical research and the public, shall submit to Congress a report that estimates the medical market value, during the 10-year period after the date of the enactment of this Act, of actinium, bismuth, and other grandchildren isotopes of uranium-233 that can be harvested without downblending and destroying the uranium-233 source material.

SEC. 10. Report on costs to United States nuclear enterprise.

Not later than 180 days after the date of the enactment of this Act, the Director of the Congressional Budget Office, after consultation with relevant industry groups and nuclear regulatory agencies, shall submit to Congress a report that estimates, for the 10-year period after the date of the enactment of this Act, the costs to the United States nuclear enterprise with respect to—

(1) disposition of uranium-233;

(2) payments to nuclear facilities to store nuclear waste; and

(3) restarting the manufacturing the United States of high-assay, low-enriched uranium.


The case for Thorium. 12. Atmospheric pressure operating conditions, no risk for explosions. Much safer and simpler design.

Molten Salt nuclear Reactors operate under Atmospheric pressure  conditions, no risk for explosions. Materials subjected to high radiation tend to get brittle or soften up. Molten Salt Thorium nuclear reactors operate under atmospheric conditions so the choice of materials that can withstand both high temperatures and high radiation is much greater, leading to a superior and less expensive design.  There is no high pressure gas buildup and the separation stage can be greatly simplified, leading to a much safer design. (From Wikipedia:)

The LFTR needs a mechanism to remove the fission products from the fuel. Fission products left in the reactor absorb neutrons and thus reduce neutron economy. This is especially important in the thorium fuel cycle with few spare neutrons and a thermal neutron spectrum, where absorption is strong. The minimum requirement is to recover the valuable fissile material from used fuel.

Removal of fission products is similar to reprocessing of solid fuel elements; by chemical or physical means, the valuable fissile fuel is separated from the waste fission products. Ideally the fertile fuel (thorium or U-238) and other fuel components (e.g. carrier salt or fuel cladding in solid fuels) can also be reused for new fuel. However, for economic reasons they may also end up in the waste.

On site processing is planned to work continuously, cleaning a small fraction of the salt every day and sending it back to the reactor. There is no need to make the fuel salt very clean; the purpose is to keep the concentration of fission products and other impurities (e.g. oxygen) low enough. The concentrations of some of the rare earth elements must be especially kept low, as they have a large absorption cross section. Some other elements with a small cross section like Cs or Zr may accumulate over years of operation before they are removed.

As the fuel of a LFTR is a molten salt mixture, it is attractive to use pyroprocessing, high temperature methods working directly with the hot molten salt. Pyroprocessing does not use radiation sensitive solvents and is not easily disturbed by decay heat. It can be used on highly radioactive fuel directly from the reactor. Having the chemical separation on site, close to the reactor avoids transport and keeps the total inventory of the fuel cycle low. Ideally everything except new fuel (thorium) and waste (fission products) stays inside the plant.

One potential advantage of a liquid fuel is that it not only facilitates separating fission-products from the fuel, but also isolating individual fission products from one another, which is lucrative for isotopes that are scarce and in high-demand for various industrial (radiation sources for testing welds via radiography), agricultural (sterilizing produce via irradiation), and medical uses (Molybdenum-99 which decays into Technetium-99m, a valuable radiolabel dye for marking cancerous cells in medical scans).

Mo-99 is used in hospitals to produce the technetium-99m employed in around 80% of nuclear imaging procedures. Produced in research reactors, Mo-99 has a half-life of only 66 hours and cannot be stockpiled, and security of supply is a key concern. Most of the world’s supply currently comes from just four reactors in Belgium, the Netherlands, Russia and South Africa, and recent years have illustrated how unexpected shutdowns at any of those reactors can quickly lead to shortages. Furthermore, most Mo-99 is currently produced from HEU targets, which are seen as a potential nuclear proliferation risk.

With the Mo-99 having a half-life of 66 hours and being continuously separated out from the fertile core in a LFTR, this seems to be the ideal vehicle to cheaply produce ample supplies of this valuable medical resource.

COVID-19, Bill Gates, Nuclear energy, research and China. It starts to make sense.

On March 13 Bill Gates, founder of Microsoft abruptly resigned from the board. Not long after it was discovered that one of his small research companies held a patent on the Coronavirus, or so it was said. Being curious I took a look at the patent.It turns out, it is a corona virus all right, complete with a vaccine against it, but it is for use in animals, not humans. Bill Gates has always been interested in vaccines, especially viruses that has a potential to develop into pandemics. It is a very worthwhile research subject, you want to have the answer right away, should a pandemics develop. The good thing about patents is, you have the exclusive right to manufacture it, or license it for a fee. He knows this very well. In the beginning of PCs Bill Gates offered to sell the Microsoft operating system to IBM for 82000 dollars. IBM said no, they had their own team developing it, so they needed no help, thank you. Well, it turned out they failed, so IBM came back to Bill Gates to take him up on the offer. Bill Gates refused, but offered to license it to IBM for a “reasonable” fee and the rest is history. So it can be very profitable. The price you pay for issuing a patent is that you have to disclose all pertinent information, in this case it consisted of the whole DNA sequence of the corona virus and the method to make the vaccine. Now it shows up that this virus was close enough to the one that caused the current pandemic, so the full DNA sequence information became very helpful to have a starting point to develop a vaccine for the current strains. Where was the original research conducted? You guessed it – in Wuhan, China. Why did Bill Gates choose China for the research?

On a totally unrelated subject, but still concerning Bill Gates, his company TerraPower decided to discontinue development of a research Nuclear reactor near Beijing, China. The reason was that the U.S. Department of Energy in October announced new restrictions on nuclear deals with China, in keeping with a broader plan by the Trump administration to limit China’s ability to access U.S-made technologies it considers to be of strategic importance.

Gates, who co-founded TerraPower, said that regulations in the United States are currently too restrictive to allow the reactor prototype to be built domestically.

There we have it! China has given sweetheart deals to everybody that want to come and do research in China. No bothersome regulations, all they want is to get full knowledge of what you are doing, be equal partners in all the findings, and if it leads to good production, be equal partners until they can fully take over. This has bee going on for over 25 years, and China was ready to fully take over, but the corona virus was released prematurely by accident.

By the way, be not surprised if North Korea suddenly agrees to abolish their nuclear weapons and stockpile. Bio warfare is cheaper and more difficult to trace and control and China doesn’t want to take the blame for it.

Anecdotal evidence shows that China is now using Hydroxychloroquine as a first defense against the COVID-19 outbreak. Did they tell us? No, but they have prohibited export of one of its main ingredients, and until very recently they were single sourced.

The moral of this story is: don’t ever get caught single sourced again! By the way, it is in the Defense Procurement Regulation. And don’t get me started on Rare Earth Metals!

Teaching online at Penn State University. All real breakthroughs occur at the crossroads of science. This is an opportunity!

I have always loved to teach. I especially enjoyed the person to person contact when you tell of something and get a smile back – they got it. One of the objects of teaching the so called Capstone Course for engineers to be is to teach cross-science, for it is in the intersection between different branches of science, crafts and engineering disciplines that real breakthroughs are made. The object is to revolutionize the students thinking. Up to now they have learnt – and learnt it well – do as your teacher have taught you, and you will get an A. Any deviation is a negative – and bothersome for the teacher. This is an attempt for me to change that – even in an online session, but since there is no direct feedback, it is really an offline instruction. see what you think – did it change your thinking?

 

This tree, the green one was planted upside down. The branches became roots, the roots became branches. It is planted just east of  Penn State Main building. Think root cause analysis.

Chernobyl was a carbon moderated Nuclear reactor. Its failure mode was to go prompt critical and splat in an uncontrolled nuclear reaction. No containment vessel could contain the explosion, so why go to the extra expense of building one? Rely instead on multiple safety circuits. The night crew disabled some safety circuits to capture power on an orderly shutdown. They had never been properly trained.

The cloud. Sweden was the first to report on the accident. Two reactors shut down due to excessive radiation in the air outside the plants.

With a Molten Salt Reactor, accidents like Chernobyl are impossible. The Three Mile Island accident was bad. The Chernobyl disaster was ten million times worse. Ah yes, I remember it well.

One morning at work, after the Three Mile Island incident, but before Chernobyl a fellow co-worker, a Ph.D. Chemist working on an Electron Capture Detector containing a small amount of Nickel 63, came with a surprising question: You know nuclear science, how come the reactors in Chernobyl don’t have a containment vessel? Well – I answered, it is because they are carbon moderated and their failure mode is that they go prompt critical, and no containment vessel in the world can hold it in, so they skip it. He turned away in disgust. A few weeks later my wife’s father died, and we went to Denmark to attend the funeral. The day of the return back to the U.S. we heard that there had been a nuclear incident in Sweden, too much radiation had caused two nuclear power stations to close down. The Chernobyl disaster had happened 26 April 1986, and this was the first time anyone outside of Chernobyl has heard about it, two days later. This was still the Soviet Union, and nothing ever did go wrong in it worthy of reporting.

(But the carbon moderated Uranium reactors are the most efficient in producing Pu-239 the preferred nuclear bomb material.)

This has nothing to do with anything, but Chernobyl can be translated wormwood. It is mentioned in the Bible, Revelation 8: 10-11 “ And the third angel sounded, and there fell a great star from heaven, burning as it were a lamp, and it fell upon the third part of the rivers, and upon the fountains of waters; And the name of the star is called Wormwood: and the third part of the waters became wormwood; and many men died of the waters, because they were made bitter.

Molten Salt Thorium reactors cannot be used to supply bomb material, and they are far safer than even Light water Uranium reactors.

With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.  It began with a magnitude 9.0 earthquake not far from the Fukushima 6 Nuclear reactor complex. The impact was a magnitude 6.8 earthquake and the operators immediately scrammed the safety rods to stop all the reactors. This succeeded! The reactors were designed with earthquakes in mind, and they passed the test. The backup power started up successfully so the cooling pumps could operate. There was one major problem though. The earthquake was so bad that the water in the spent fuel holding tanks splashed out and exposed the spent fuel rods to air making them emit radioactivity into the air.

The water pumps worked for a while, but then came the tsunami. All the reactors were inside a tsunami wall, so far, so good

But the fuel storage tanks for the backup power generators were outside the tsunami wall and were washed away. The batteries were only supposed to last until backup power was established, and with water circulation ended the meltdown started.

This disaster was even bigger than Chernobyl and contamination is still spreading.

In the periodic table, iron has the densest core. Fusion can occur with elements with a lower atomic number than iron, fission can begin with  with elements after lead. What happens in a supernova?

On climate change: Temp records come from boreholes, seashells, and looking at isotope variations among other sources . Of particular interest is the medieval warm period and the little ice age. How did the little ice age happen? There was no decrease in CO2 during that time.

Especially interesting is cosmic radiation that does not come from the sun. It varies a lot, and consists mostly of iron nuclei and comes from distant supernovas. There was two of them, in 1572 and 1604 A.D., both shone brighter in the sky than Venus. Since then we have not seen any supernovas anywhere nearly as bright . Did they trigger the little ice age?

A single iron nucleus can ionize thousands of air molecules, causing condensation and forming the beginning of a cloud.

The iron nuclei enter the earth’s atmosphere with a speed that exceeds the speed of light in atmosphere, causing this eerie blue light. It spreads like a sonic boom.

Cosmic radiation in the form of iron nuclei is the major source of the generation of Carbon 14. When fossil fuel is burned there is very little C14 in the CO2 generated, but if it is burned by digestion of food, by fermentation, by burning wood or by wildfire, it contains the same concentration of C14 as was in the air at the time of the generation of the biomass. Since C14 has a half life of  5700 +- 40 years, we could find out the age of that biomass – or could we?

This is one of my very favorite slides. The best way of finding out how a black body responds is by introducing an impulse and see what happens. In this case the impulse was open air Nuclear bomb tests, performed mostly by United States and the Soviet Union, but all in the Northern Hemisphere. Test stations to see the amount of C14 in the air were set up in Austria and New Zealand. What did we learn? We learn that the air mixes between the Northern and the Southern Hemisphere in about 2 years, and because the half-life of C14 shown here is 12.5 years, not 5700 years, it shows the absorption rate in the oceans. Both of these values would have been difficult if not impossible to find out without open air Nuclear tests, Were they bad? You bet, but since they happened, glean what you can from it. What else did we learn? You can no longer use carbon dating if there is any chance of chance of contamination with newer biomass, or if it is newer than 1955 A.D. Is the specimen appearing to be older or younger?

Since we have shown that the amount of C14 in the air has not been constant over time the age curve has to be calibrated. How do we do that? By using artifacts of known age.

The radioactive fallout decay from a Nuclear test occurs faster than from the Chernobyl disaster. Every nuclear fallout fingerprint is different.

A Liquid Fluoride Thorium based fast breeder nuclear reactor produces much less TRansUranium waste, 0.01% waste products compared to a Uranium-235 fast breeder. The Thorium process has a much higher efficiency of fission than  the Uranium process.

Pu = Plutonium, Am = Americum, Cm = Curium, all TRansUraniums, nasty stuff.

With Thorium based Nuclear power, there are no real problems, with traditional U235 power long tern storage is an immense and urgent problem, and has been since the 1960’s. At that time Sweden had a heavy water  U-238 nuclear power program going, but abandoned it in favor of traditional U-235 power. U.S. promised to provide the material and take care of the reprocessing and final storage of all nuclear waste at cost if Sweden joined the nuclear proliferation treaty. Reprocessing was to be done in Washington State, and one of the final storage sites mentioned was Yucca Mountain in Nevada, having the ideal Geological properties.

Time goes by and in 1982 – Congress passed the Nuclear Waste Policy Act, requiring the establishment of a deep geologic repository for nuclear waste storage and isolation. Yucca Mountain was high on the list out of 9 possible sites.

Time goes by, and Congress is still not able to decide on a solution. Meanwhile, TRU’s from spent and reprocessed fuel is piling up in less than ideal locations. Thorium based nuclear power would go a long way to alleviate this problem.

Radioactive waste from an LFTR (Liquid Fluoride Thorium Reactor)  decays down to background radiation in 300 years instead of a million years for U-235 based reactors. Initially LFTRs produce as much radioactivity as an U-235 based nuclear reactor, since fission converts mass to heat, but the decay products have a much shorter half-life.

And Fukushima is still aglow.

The first thing we must realize is that rare earth metals are not all that rare. They are a thousand times or more abundant than gold or platinum in the earth crust and easy to mine, but a little more difficult to refine. Thorium and Uranium will also be mined at the same time as the rare earth metals since they appear together in the ore.

The U.S. used to have a strategic reserve of rare earth metals, but that was sold off in 1998 as being no longer cost effective or necessary. Two years later the one U.S. rare earth metals mine that used to supply nearly the whole world, the Mountain Pass Mine in California closed down, together with its refining capacity. From that day all rare earth metals were imported. In 2010 it started up again together with the refining capacity but went bankrupt in 2015, closed down the refining but continued selling ore to China. They will start up refining again late 2020. Meanwhile China is slapping on a 25% import tariff on imported ore starting July 1 2020. Rare earth metals may be in short supply for a while.

U.S. used to be the major supplier of rare earth metals, which was fine up to around 1984. Then the U.S. regulators determined that Uranium and Thorium contained in the ore made the ore radioactive, so they decided to make rare earth metal ore subject to nuclear regulations with all what that meant for record keeping and control. This made mining in the U.S. unprofitable so in 2001 the last domestic mine closed down. China had no such scruples, such as human and environmental concerns, so they took over the rare earth metals mining and in 2010 controlled over 95% of the world supply, which was according to their long term plan of controlling the world by 2025.

 

 

Climate change and our divided nation. Is it a top priority and a threat to mankind as most Democrats believe, or is it not much to worry about, and maybe even beneficial, as most Republicans believe?

We are a divided nation indeed. In no other area is this more apparent than in our attitudes towards Climate Change. Democrats regard is as a top priority more and more, while Republicans maintain it is not much to worry about, way down in the importance of things that need fixing. The PEW research center shows the growing discrepancy:

Republicans live in over 90% of the area of the United States, Democrats are concentrated to urban areas, and in areas of majority black or Hispanic population.

Most of the Democrats live concentrated in Urban areas, and they have already experienced climate change! The Urban Heat Island effect can be as high as 7 degree Celsius on a dog day in August, with humidity to boot!

Most Republicans on the other hand live in rural areas where there are no heat islands. If anything, they are realizing that the winters are less severe, and the summers are not getting hotter. They see good in the climate change, such as we can now feed another 2 billion people on earth, thanks to the fertilizing effect of increasing CO2.

I have put in the reasons why Rising CO2 levels may actually be on balance beneficial : https://lenbilen.com/2020/02/28/climate-change-is-real-and-is-caused-by-rising-co2-levels-leading-to-less-extreme-weather-this-is-on-balance-good-for-the-environment/

Now for the question: Should we expand the burning of fossil fuels?

Even though increasing levels of CO2 is beneficial for the climate we should not expand, but reduce the mining, drilling and fracking of fossil fuels. There are better ways of supply the energy needs of the future. We should leave some of the fossil fuels for our great grandchildren not yet born.

More solar panel farms. This I see as a niche market. China still control 90% of the rare earth metal mining we should only use them in urban areas to lessen the need for an expanded grid. One area that is ideal for more solar panels is to put them up as roofs in open parking lots, especially those that are covered with black asphalt. Parked cars will be cooler and dryer, and it will lessen the urban heat effect.

More wind turbine farms: I love birds, especially large birds such as eagles and raptors. The eagles like to build their aeries on top of the wind turbines, and – you guessed it – they get whacked by the rotor blades. During the Obama administration they upped the yearly allowable kill of bald eagles from from 1100 to 4200. If you kill a golden eagle there is still a 250000 dollar fine. If we increase the number of wind-farms we could run out of large birds.

Hydro-electric power: This is mostly already utilized to capacity. One exception is the river Congo in Africa, still waiting to produce electric power.

Nuclear plants: This is the only realistic solution, but not the common U235 power plants. No, we need a Manhattan-like project to fast track Molten Salt Thorium Nuclear reactors. Here are 25 r3qsons why this is the only realistic solution until we master fusion power, which is always a couple of decades away from commercialization.

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

 

The need to develop Thorium based Nuclear Energy as the major electric energy supply. 10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control. This is another beauty of the molten salt design. The temperature coefficient is highly negative, leading to a safe design with simple and consistent feedback. What does that mean?  It means that if temperature in the core rises, the efficiency of the reaction goes down, leading to less heat generated. There is no risk for a thermal runaway. In contrast,  graphite moderated generator can have a positive temperature coefficient which leads to complicated control, necessitating many safety circuits to ensure proper operation and shutdown. Their failure mode is they go prompt critical, and no containment vessel can contain the explosion that would occur, so they are built without one.

The need to develop Thorium based Nuclear Energy as the major electric energy supply. 6. Thorium based nuclear power is not suited for making nuclear bombs.

 Thorium based Nuclear Power does not produce Plutonium239, which is the preferred material used in nuclear bombs. The higher Plutonium isotopes and other TRansUraniums are about as nasty as they get, and need expensive protection against terror attacks, and need to be stored for a very long time.

One anecdote from my youth. The time had come to apply to University, and to my delight I was accepted to Chalmers’ University in Sweden as a Technical Physics major. I felt, maybe I can do my part by becoming a Nuclear Engineer and help solve the energy needs of the future. The Swedes at that time championed the heavy water – natural Uranium program together with the Canadians. Sweden is a non-aligned country, so it was not privy to any atomic secrets, it had to go it alone. They settled on the heavy water moderated natural Uranium process because Sweden had an ambition to produce its own nuclear bomb. Officially this was never talked about, and I was not aware of it at that time. They could have gone with Thorium instead, but a Thorium based nuclear reactor  produces very little Plutonium, and what it produces is PU-238, not suitable for bomb making.

I was excited to learn about all the possibilities and signed up for a couple of nuclear classes. One lab was to design a safety circuit, then run the heavy water research reactor critical and hopefully watch the reactor shut down from the safety circuit before the system safety circuit shutdown. About that time the word came that U.S. will sell partially enriched uranium at bargain basement prices if Sweden agreed to abandon the heavy water project and sign the nuclear non-proliferation treaty, a treaty being formulated by U.N.

Sweden was in awe about U.N, all the problems of the world were to be solved through it, and it had such capable General Secretary in Dag Hammarskjöld, a Swede. I looked at the light water, partially enriched Uranium nuclear power plants being developed and decided to have no part with it, not due to safety concerns but it was the design that produced the most nuclear waste of any of the available designs. At that time there was still optimism that fusion would be ready by about the year 2010 or so. The cost of maintaining spent fuel in perpetuity was never considered, so light water reactors became the low cost solution.

India on the other hand refused to join the nuclear non-proliferation treaty, kept their heavy water program going and had by 1974 produced enough plutonium for one nuclear bomb, which they promptly detonated. They still use heavy water moderated reactors, but since India is low on Uranium but rich in Thorium they have now converted one heavy water reactor to thorium with a Plutonium glow plug. It went on-line in 2011.

They are also developing molten salt Thorium reactors, but full production is still a few years off.

There we have it. We could have gone with Thorium from the beginning, but the cold war was on, and the civilian peaceful use of nuclear energy was still all paid for by nuclear weapons research and development. Once all the bombs we could ever need were developed the greatest asset of nuclear power became its greatest liability.

 

Twenty-two reasons to rapidly develop Thorium based Nuclear Power generation.

(The reasons keep piling up. A more updated 25 reasons are found here ).

We need badly to develop a Thorium based molten salt fast breeder nuclear reactor to develop our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutron, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

Here are 22 good reasons for Thorium:

1. Cheap and unlimited raw material.

2. Much less TRansUranium waste, 0.01% waste products compared to a Uranium-235 fast breeder.

3. Produces Pu-238 as one of the final TRans Uranium products, in short supply and much in demand for space exploration nuclear power.

4. Radioactive waste decays down to background radiation in 300 years instead of a million years.

5. Does not produce Plutonium 239, which is the preferred material used in nuclear bombs.

6. Produces isotopes that helps cure certain cancers.

7. Thorium Nuclear Reactors are earthquake safe.

8. No risk for a meltdown, the fuel is already molten.

9. Very high negative temperature coefficient leading to a safe and stable control.

10. Atmospheric pressure operating conditions, no risk for explosions.

11. Virtually no spent fuel problem, no storage or transport.

12.  Scales beautifully from small portable generators to full size power plants.

13. No need for evacuation zones, can be placed near urban areas.

14. Rapid response to increased or decreased power demands.

15. Lessens the need for an expanded national grid.

16. Russia has a Thorium program.

17. China is having a massive Thorium program.

18. India has an active Thorium program.

19.Lawrence Livermore Laboratories is developing a small portable self-contained Thorium reactor capable of being carried on a low-bed trailer.

20. The need for a Yucca Mountain nuclear storage facility will eventually go away.

21. Produces electricity at a cost of about 4 c/kWh.

22. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

1. Cheap and unlimited raw material. There is enough Thorium around for a million years at today’s worldwide energy generation level , and not only that, it is a by-product of mining heavy metals and rare earth metals. The price is the cost of extracting and refining, which can be as low as $40/Kg. No extra mining required for extracting the Thorium.

2. Much less TRansUranium waste, 0.01% waste products compared to a Uranium-235 fast breeder. The Thorium process has a much higher efficiency in fission than  the Uranium process. See the figure below.

3. Produces Pu-238 as one of the final TRans Uranium products, in short supply and much in demand for space exploration nuclear power.

NASA relies on pu-238 to power long-lasting spacecraft batteries that transform heat into electricity. With foreign and domestic supplies dwindling, NASA officials are worried the shortage will prevent the agency from sending spacecraft to the outer planets and other destinations where sunlight is scarce. Thorium reactors produce PU-238 as a “free” byproduct.  In 2009 Congress denied a request to produce more Pu-238 by traditional means, instead relying on Russia to sell us the plutonium. (Remember the Russian reset?) Russia made their last delivery in 2010.

4. Radioactive waste decays down to background radiation in 300 years instead of a million years. Initially a Thorium reactor produces as much radioactivity as other nuclear reactors, since fission converts mass to heat, but the decay products have a much shorter half-life. See the figure below.

5. Does not produce Plutonium239, which is the preferred material used in nuclear bombs. The higher Plutonium isotopes and other TRansUraniums are about as nasty as they get, and need expensive protection against terror attacks, and need to be stored for a very long time.

6. Produces isotopes that helps cure certain cancers. For decades, medical researchers have sought treatments for cancer. Now, Alpha Particle Immunotherapy offers a promising treatment for many forms of cancer, and perhaps a cure. Unfortunately, the most promising alpha-emitting medical isotopes, actinium-225 and its daughter, bismuth-213, are not available in sufficient quantity to support current research, much less therapeutic use. In fact, there are only three sources in the world that largely “milk” these isotopes from less than 2 grams of thorium source material. Additional supplies were not forthcoming. Fortunately, scientists and engineers at Idaho National Laboratory identified 40-year-old reactor fuel stored at the lab as a substantial untapped resource and developed Medical Actinium for Therapeutic Treatment, or MATT, which consists of two innovative processes (MATT-CAR and MATT-BAR) to recover this valuable medical isotope.

7. Earthquake safe. Thorium reactors have a very simple and compact design where gravity is the only thing needed to stop the nuclear reaction. Conventional Nuclear reactors depend on external power to shut down after a SCRAM, where poison rods fall down to halt the reaction.  The next figure shows the concept of a Thorium reactor.

The idea is to empty the fissile U-233 core through gravity alone. Since the fuel is already molten, it can run out into channels like pig-iron into cooling heat exchangers with  water supplied through gravity alone.

As we can see the reactor hardened structure is compact, and can be completely earthquake and tsunami proof. What can be sheared off are the steam pipes and external power, but the shutdown can complete without additional power.

8. No risk for a meltdown, the fuel is already molten. The fuel in a Thorium reactor is U-233 in the form of UraniumFluoride (UF4) salt that also contains Lithium and Beryllium, in its molten form it has a very low vapor pressure. The salt flows easily through the heat exchangers and the separators. The salt is very toxic, but it is completely sealed.

9. Very high negative temperature coefficient leading to a safe and stable control. This is another beauty of the molten salt design. The temperature coefficient is highly negative, leading to a safe design with simple and consistent feedback. What does that mean?  It means that if temperature in the core rises, the efficiency of the reaction goes down, leading to less heat generated. There is no risk for a thermal runaway. In contrast, Chernobyl used graphite moderated Uranium , and it suffered a thermal runaway as the operators bypassed three safety circuits trying to capture the last remaining power during a normal shut-down. The reactor splat, the graphite caught fire and the rest is history. Five days later two nuclear installations in Sweden shut down their reactors due to excessive radiation, but it took a while before they could figure out what had happened. First then did the Soviets confess there had been an accident.

10. Atmospheric pressure operating conditions, no risk for explosions. Materials subjected to high radiation tend to get brittle or soften up. Thorium reactors operate under atmospheric conditions so the choice of materials that can withstand both high temperatures and high radiation is much greater, leading to a superior and less expensive design.  There is no high pressure gas buildup and the separation stage can be greatly simplified.

11. Virtually no spent fuel problem, no storage or transport. I am following the events at Fukushima Nuclear Power plants with great interest. How ironic that the greatest risk is with the spent fuel, not with the inability to shut down the working units. The spent fuel issue is the real Achilles’ heel of the Nuclear Power Industry. Thorium power works differently as nearly all fuel gets consumed as it is generated. When the process shuts down, that is it. Only the radioactivity that is en route so to say will have to be accounted for, not everything generated thus far in the process. The difference is about 10000 to one in the size of the problem. Time to switch over to Thorium.

12.  Scales beautifully from small portable generators to full size power plants. One of the first applications was as an airborne nuclear reactor.

 Granted this was not a Thorium breeder reactor, but it proves nuclear reactors can be made lightweight. Thorium reactor may be made even lighter as long as they are not of the breeder type.

13. No need for evacuation zones, can be placed near urban areas. Thorium reactors operate at atmospheric pressure and have a very high negative temperature coefficient, so there is no risk for a boil-over. They are easily made earthquake-safe since no pressure vessel is needed.

14. Rapid response to increased or decreased power demands. The increase in power output to increased power demand is faster than in coal-fired power plant. All you have to do is increase the speed of flow in the core and it will respond with raised temperature.

15. Lessens the need for an expanded national grid. The National Electric grid is at the breaking point. It needs to be expanded, but neighborhood resistance is building in many areas where they need an expansion the most. The grid is also sensitive to terrorism activities.

 As we can see the national grid is extensive, and under constant strain. A way to lessen the dependency on the national grid is to sprinkle it with many small to medium sized Thorium Nuclear Power generators.  They can be placed on barges in rivers and along the coast, giving the grid maximum flexibility to respond in  case of an emergency.

16. Russia has a Thorium program This is a self-contained Thorium Nuclear Reactor on a barge. Coolant readily available. Hoist it a couple of cables and the town will have all the power it needs.

17. China is having a massive Thorium program. The People’s Republic of China has initiated a research and development project in thorium molten-salt reactor technology, it was announced in the Chinese Academy of Sciences (CAS) annual conference on Tuesday, January 25. An article in the Wenhui News followed on Wednesday. Chinese researchers also announced this development on the Energy from Thorium Discussion Forum. Led by Dr. Jiang Mianheng, a graduate of Drexel University in electrical engineering, the thorium MSR efforts aims not only to develop the technology but to secure intellectual property rights to its implementation. This may be one of the reasons that the Chinese have not joined the international Gen-IV effort for MSR development, since part of that involves technology exchange. Neither the US nor Russia have joined the MSR Gen-IV effort either. A Chinese delegation led by Dr. Jiang travelled to Oak Ridge National Lab last fall to learn more about MSR technology and told lab leadership of their plans to develop a thorium-fueled MSR.The Chinese also recognize that a thorium-fueled MSR is best run with uranium-233 fuel, which inevitably contains impurities (uranium-232 and its decay products) that preclude its use in nuclear weapons. Operating an MSR on the “pure” fuel cycle of thorium and uranium-233 means that a breakeven conversion ratio can be achieved, and after being started on uranium-233, only thorium is required for indefinite operation and power generation.

18. India has an active Thorium program. • India has a flourishing and largely indigenous nuclear power program and expects to have 20,000 MWe nuclear capacity on line by 2020 and 63,000 MWe by 2032.  It aims to supply 25% of electricity from nuclear power by 2050. • Because India is outside the Nuclear Non-Proliferation Treaty due to its weapons program, it was for 34 years largely excluded from trade in nuclear plant or materials, which has hampered its development of civil nuclear energy until 2009. • Due to these trade bans and lack of indigenous uranium, India has uniquely been developing a nuclear fuel cycle to exploit its reserves of thorium. • Now, foreign technology and fuel are expected to boost India’s nuclear power plans considerably.  All plants will have high indigenous engineering content. • India has a vision of becoming a world leader in nuclear technology due to its expertise in fast reactors and thorium fuel cycle. • India’s Kakrapar-1 reactor is the world’s first reactor which uses thorium rather than depleted uranium to achieve power flattening across the reactor core. India, which has about 25% of the world’s thorium reserves, is developing a 300 MW prototype of a thorium-based Advanced Heavy Water Reactor (AHWR). The prototype is expected to be fully operational by 2011, following which five more reactors will be constructed. Considered to be a global leader in thorium-based fuel, India’s new thorium reactor is a fast-breeder reactor and uses a plutonium core rather than an accelerator to produce neutrons. As accelerator-based systems can operate at sub-criticality they could be developed too, but that would require more research. India currently envisages meeting 30% of its electricity demand through thorium-based reactors by 2050.

19.Lawrence Livermore Laboratories is developing a small portable self-contained Thorium reactor capable of being carried on a low-bed trailer. A Democratic member of the United States House of Congress (Joseph Sestak) in 2010 added funding for research and development for a reactor that could use thorium as fuel and fit on a destroyer-sized ship.  Lawrence Livermore national laboratories are currently in the process of designing such a self-contained (3 meters by 15 meters) thorium reactor. Called SSTAR (Small, Sealed, Transportable, Autonomous Reactor), this next-generation reactor will produce 10 to 100 megawatts electric and can be safely transported via ship or truck.  The first units are expected to arrive in 2015, be tamper resistant, passively failsafe and have a operative life of 30+ years.

20. The need for a Yucca Mountain nuclear storage facility will eventually go away. Since Thorium consumes the fissile material as it is getting created, the need for a long term storage facility of the Yucca Mountain type will eventually go away. In remote locations there can be built Thorium Nuclear Power generators that consume spent material from other nuclear processes. The need to do it in remote locations is the hazard of the already existing nuclear wastes. It should be possible to reduce the existing stockpile of nuclear wastes and nuclear bombs by about 90% and make electricity in the process. The cost to do this is higher than the normal process due to the additional cost of security.

21. Produces electricity at a cost of about 4 c/kWh.  The cost to produce electricity with Thorium generators should be about 40% less than Advanced Nuclear and about 30 % less than from Coal (with scrubbers). Solar generation is about 4 times more expensive (without subsidies) Wind power is cheaper when the wind blows, but the generation capacity has to be there even when the wind doesn’t blow, so the only gain from wind power is to lessen the mining or extraction of carbon.  Even if we double the renewable power we will only go from 3.6% to 7.2% of total energy needed.  Hydroelectric  power is for all practical purpose maxed out, so all future increase must come from Coal, Natural Gas, Petroleum or Nuclear. Thorium powered Nuclear Generators is the way to go.

Many of the pictures are from a slide presentation given by David Archibald in Melbourne Feb 5 2011. He posted it “for the benefit of all” which I have interpreted as waving the copyright of the pictures

http://wattsupwiththat.com/2011/02/12/david-archibald-on-climate-and-energy-security/

Eleven more reasons to switch to Thorium as Nuclear fuel.

(The reasons keep piling up. A more updated 25 reasons are found here ).

Eleven more reasons to switch to Thorium as Nuclear fuel. The first eleven are found in https://lenbilen.com/2012/02/15/eleven-reasons-to-switch-to-thorium-based-nuclear-power-generation/  I am following the events at Fukushima Nuclear Power plants with great interest. How ironic that the greatest risk is with the spent fuel, not with the inability to shut down the working units. The spent fuel issue is the real Achilles’ heel of the Nuclear Power Industry. Thorium power works differently as nearly all fuel gets consumed as it is generated. When the process shuts down, that is it. Only the radioactivity that is en route so to say will have to be accounted for, not everything generated thus far in the process. The difference is about 10000 to one in the size of the problem. Time to switch over to Thorium.

12.  Scales beautifully from small portable generators to full size power plants. One of the first applications was as an airborne nuclear reactor.

 Granted this was not a Thorium breeder reactor, but it proves nuclear reactors can be made lightweight. Thorium reactor may be made even lighter as long as they are not of the breeder type.

13. No need for evacuation zones, can be placed near urban areas. Thorium reactors operate at atmospheric pressure and have a very high negative temperature coefficient, so there is no risk for a boil-over. They are easily made earthquake-safe since no pressure vessel is needed.

14. Rapid response to increased or decreased power demands. The increase in power output to increased power demand is faster than in coal-fired power plant. All you have to do is increase the speed of flow in the core and it will respond with raised temperature.

15. Lessens the need for an expanded national grid. The National Electric grid is at the breaking point. It needs to be expanded, but neighborhood resistance is building in many areas where they need an expansion the most. The grid is also sensitive to terrorism activities.

 As we can see the national grid is extensive, and under constant strain. A way to lessen the dependency on the national grid is to sprinkle it with many small to medium sized Thorium Nuclear Power generators.  They can be placed on barges in rivers and along the coast, giving the grid maximum flexibility to respond in  case of an emergency.

16. Russia has a Thorium program This is a self-contained Thorium Nuclear Reactor on a barge. Coolant readily available. Hoist it a couple of cables and the town will have all the power it needs.

17. China is starting up a Thorium program. The People’s Republic of China has initiated a research and development project in thorium molten-salt reactor technology, it was announced in the Chinese Academy of Sciences (CAS) annual conference on Tuesday, January 25. An article in the Wenhui News followed on Wednesday. Chinese researchers also announced this development on the Energy from Thorium Discussion Forum. Led by Dr. Jiang Mianheng, a graduate of Drexel University in electrical engineering, the thorium MSR efforts aims not only to develop the technology but to secure intellectual property rights to its implementation. This may be one of the reasons that the Chinese have not joined the international Gen-IV effort for MSR development, since part of that involves technology exchange. Neither the US nor Russia have joined the MSR Gen-IV effort either. A Chinese delegation led by Dr. Jiang travelled to Oak Ridge National Lab last fall to learn more about MSR technology and told lab leadership of their plans to develop a thorium-fueled MSR.The Chinese also recognize that a thorium-fueled MSR is best run with uranium-233 fuel, which inevitably contains impurities (uranium-232 and its decay products) that preclude its use in nuclear weapons. Operating an MSR on the “pure” fuel cycle of thorium and uranium-233 means that a breakeven conversion ratio can be achieved, and after being started on uranium-233, only thorium is required for indefinite operation and power generation.

18. India has an active Thorium program. • India has a flourishing and largely indigenous nuclear power program and expects to have 20,000 MWe nuclear capacity on line by 2020 and 63,000 MWe by 2032.  It aims to supply 25% of electricity from nuclear power by 2050. • Because India is outside the Nuclear Non-Proliferation Treaty due to its weapons program, it was for 34 years largely excluded from trade in nuclear plant or materials, which has hampered its development of civil nuclear energy until 2009. • Due to these trade bans and lack of indigenous uranium, India has uniquely been developing a nuclear fuel cycle to exploit its reserves of thorium. • Now, foreign technology and fuel are expected to boost India’s nuclear power plans considerably.  All plants will have high indigenous engineering content. • India has a vision of becoming a world leader in nuclear technology due to its expertise in fast reactors and thorium fuel cycle. • India’s Kakrapar-1 reactor is the world’s first reactor which uses thorium rather than depleted uranium to achieve power flattening across the reactor core. India, which has about 25% of the world’s thorium reserves, is developing a 300 MW prototype of a thorium-based Advanced Heavy Water Reactor (AHWR). The prototype is expected to be fully operational by 2011, following which five more reactors will be constructed. Considered to be a global leader in thorium-based fuel, India’s new thorium reactor is a fast-breeder reactor and uses a plutonium core rather than an accelerator to produce neutrons. As accelerator-based systems can operate at sub-criticality they could be developed too, but that would require more research. India currently envisages meeting 30% of its electricity demand through thorium-based reactors by 2050.

19.Lawrence Livermore Laboratories is developing a small portable self-contained Thorium reactor capable of being carried on a low-bed trailer. A Democratic member of the United States House of Congress (Joseph Sestak) in 2010 added funding for research and development for a reactor that could use thorium as fuel and fit on a destroyer-sized ship.  Lawrence Livermore national laboratories are currently in the process of designing such a self-contained (3 meters by 15 meters) thorium reactor. Called SSTAR (Small, Sealed, Transportable, Autonomous Reactor), this next-generation reactor will produce 10 to 100 megawatts electric and can be safely transported via ship or truck.  The first units are expected to arrive in 2015, be tamper resistant, passively failsafe and have a operative life of 30+ years.

20. The need for a Yucca Mountain nuclear storage facility will eventually go away. Since Thorium consumes the fissile material as it is getting created, the need for a long term storage facility of the Yucca Mountain type will eventually go away. In remote locations there can be built Thorium Nuclear Power generators that consume spent material from other nuclear processes. The need to do it in remote locations is the hazard of the already existing nuclear wastes. It should be possible to reduce the existing stockpile of nuclear wastes and nuclear bombs by about 90% and make electricity in the process. The cost to do this is higher than the normal process due to the additional cost of security.

21. Produces electricity at a cost of about 4 c/kWh.  The cost to produce electricity with Thorium generators should be about 40% less than Advanced Nuclear and about 30 % less than from Coal (with scrubbers). Solar generation is about 4 times more expensive (without subsidies) Wind power is cheaper when the wind blows, but the generation capacity has to be there even when the wind doesn’t blow, so the only gain from wind power is to lessen the mining or extraction of carbon.  Even if we double the renewable power we will only go from 3.6% to 7.2% of total energy needed.  Hydroelectric  power is for all practical purpose maxed out, so all future increase must come from Coal, Natural Gas, Petroleum or Nuclear. Thorium powered Nuclear Generators is the way to go.

22. Save $500 Million and use the 1600 Kg U-233 we have to start Thorium Reactors! Here is an idea on how to save money that comes from the Thorium community on how to save more than 500 million dollars in the federal budget and energy, scientific and medical benefits as a bonus. The situation: The Department of Energy has 1400 Kg Uranium-233 stored at Oak Ridge National Lab. They are in process of downgrading it to natural uranium by downblending it with depleted uranium. They need 200 tons of depleted uranium to do the task, rendering it unusable for anything. The decommissioning was approved in 2003 and to date 130 million has been spent, but the actual downblending hasn’t even started yet.

Proposal 1. Sell it to India which has an active Thorium nuclear reactor program. There it can be used as a fuel producing an estimated 600 million dollars worth of electricity. Sarah Palin is going to India to be the keynote speaker at the India Today Conclave, a good forum to publicize this and other potential cooperation in future of nuclear power generation.

Proposal 2. Stop the decommissioning immediately. Build our own Thorium Nuclear Reactor and over time get 600 million dollars worth of electric power and 45g of Plutonium-238.