After the UN COP27: Re-signing the Paris Accord was a very bad idea, even for the environment! A Limerick. Solve the water problem in the American Southwest instead!

Don’t fall for the Paris accord!

A bondage we ill can afford.

CO2 keeps us free;

food for you, food for me!

The end of the world!! cries the horde.

6 – 18 November 2022, the Government of the Arab Republic of Egypt was hosting the 27th Conference of the Parties of the UNFCCC (COP 27), with a view to building on previous successes and paving the way for future ambition to effectively tackle the global challenge of climate change.

According to alarmists’ climate change models, joining the Paris accord will decrease global temperatures by 0.05 to 0.17 degrees Celsius by the year 2100, or a catastrophe too big to fathom will occur. See the official chart below!

I want to reply to what climate alarmists say:  My conclusions on climate change are not in line with political science logic. Being a climate realist, I never said that increasing CO2 is unimportant, only that the negative effects are vastly exaggerated, and the positive effects are ignored. Let me explain:

Climate alarmists and IPCC AR5 believe that the thermal response to increasing CO2 has a feedback gain from increasing water vapor that results from higher temperatures, leading to much higher temperatures. Current climate model averages indicate a temperature rise of 4.7 C by 2100 if nothing is done, 4.65 C if U.S keeps all its Paris commitments and 4.53 C if all countries keep their part of the agreement. In all cases, with or without Paris agreement we are headed for a disaster of biblical proportions.

As the chart indicates, implementing all of the Paris agreement will delay the end of mankind as we know it by at most 4 years.

Myself and quite a few scientists, meteorologists, but mostly engineers believe the feedback loop in nature is far more complicated than that, in fact, there is a large negative feedback in the system, preventing a temperature runaway, and we have the observations to prove it.  The negative feedback manifests itself in 2 ways:

Inorganic feedback, represented by greenhouse gases and clouds. If there were no clouds, the tropics would average a temperature of  140 F  thanks to the greenhouse effect. The clouds reflect back up to 300 W/m2 into space rather than the same energy being absorbed into water, air or soil. Clouds are highly temperature dependent, especially cumulus and cumulonimbus clouds. Cumulus clouds are formed in the morning, earlier the warmer and more humid it is, and not formed at all if it is cold and dry, thunderstorms appear when it is warm enough. The feedback, which is positive at low temperatures becomes negative at warmer temperatures, and in the equatorial doldrums, surface temperature has found its equilibrium. No amount of CO2 will change that. Equatorial temperature follows the temperature of the ocean, warmer when there is an el niño, cooler when there is a la niña. Here is a chart of temperature increases since satellite measurements began as a function of latitude.

The tropics follow the ocean temperature closely, no long term rising trend, the extratropics are also stable.

In the Arctic there is a rising temperature trend, up to 5C in the winter, less so in spring and fall, but a slightly cooling trend in the summer.

If this trend continues, all Arctic ocean ice may melt in 300 to 400 years, faster if there is further warming and nothing else is changing. Let’s take a look at the Arctic above the 80th latitude, an area of about 3,85 million square kilometers, less than 1% of the earth’s surface, but it is there where global warming is most pronounced. This chart from Nov 17, 2022 shows this trend.

Take a look at ice accumulation on Greenland.

What happened? Last year it snowed more than normal. In the Arctic, it gets warmer under clouds, warmer still when it snows. Take a look at Greenland and what has happened this freezing season. It has snowed and snowed and Greenland has so far, nearly three months into the accumulation season accumulated 60 Gigatons more ice than normal. So, at this point in the season we are a total of 80 Gt ahead of last year, and this is with Arctic temperatures this fall being five degrees warmer than normal. The counterintuitive conclusion is that it may very well be that warmer temperatures produces more accumulation of snow and ice, colder temperatures with less snow accumulate less. What happens during the short Arctic summer? With more snow and ice accumulated it takes longer to melt last years snow and ice, so the temperature stays colder longer. If this melting period ends without melting all snow and ice, multi year ice will accumulate, and if it continues unabated, the next ice age will start.

The second feedback loop is organic. More CO2 means more plant growth.  According to NASA (2015) there has been a significant greening of the earth, more than 15% since satellite measurements begun. This results in a warming effect everywhere, except in areas that are drying out, where there is a cooling trend. The net effect is that we can now feed 2 billion more people than before without using more fertilizer. Check this picture from NASA, showing the increased leaf area extends over 90 % of the land area.

There are two major ways of trying to predict future temperature trends. UN IPCC uses models to predict. They look like this:

This model refers to the atmosphere between 30,000 and 38,000 feet altitude, a height where water vapor is low, so CO2 is the dominant greenhouse factor. As we can see, the models are off by a factor of 4 in average temperature rise. This is because all IPCC models suffer from a fatal flaw: they assume that the factors are additive, but it is impossible to absorb more than 100% of all the energy available in one particular wavelength, for instance, if CO2 absorbs 100% of all energy available in the 14 to 16 micrometer band, and water vapor absorbs 60% in the same band, the sum is not 160%. It is still 100%.

Abetter way to estimate temperature trends is to treat the earth as a black body with sunlight warming the earth and the same amount of energy escaping through black body radiation. If there were no greenhouse gases the equilibrium temperature would be 255 K (-18 C or 0F) according to Stefan-Boltzmann law, which states that the total radiant heat power emitted from a surface is proportional to the fourth power of its absolute temperature. But thanks to water vapor and CO2 and some other minor gases we can now enjoy a comfortable average temperature of 13.9C, up from 12.7C average temperature around 1700, just as the little ice age ended and industrialization started in earnest.

Using the black box approach and assuming equilibrium temperature at all times this method fits much better with measurements, for details, see here. The total changes in temperature when CO2 rose from 280 ppm to 400 ppm, lower cloud cover decreased 2% and leaf area on earth rose 15%.

Direct effect from rising CO2: 0.17C

Secondary effect from increasing water vapor from rising CO2: 0.05C

Effect from rising Methane: less than 0.01C

Effect from N20 and Ozone: less than 0.01C

Temperature rise from decreasing cloud cover by2%, from 64% to 62%: 0.67C

Secondary effect from increasing water vapor from temperature rise from decreasing clouds: 0.17C

Temperature increase from greening of the earth 0.12C

Temperature decrease from areas of desertification 0.0005C

TOTAL TEMPERATURE RISE: 1.2C which is equal to the measured rise from 12.7C to 13.9C.

The big question is: What will the equilibrium temperature be in 2050 if we do nothing to limit CO2 and other greenhouse gases?

Direct effect from rising CO2 levels from 400 ppm to 490 ppm: 0.10C

Secondary effect from increasing water vapor from increasing CO2: 0.03 C

Temperature rise from decreasing cloud cover another 1/2% 0.16C

Secondary effect from increasing water vapor from temperature rise from decreasing clouds: 0.04C

Temperature increase from greening of the earth another 10%: 0.07C

Temperature decrease from areas of desertification 0.0005C

TOTAL TEMPERATURE RISE: 1.6C, 0.13C of which is when CO2 rises from 400 to 490 ppm, 0.20 C from when cloud coverage decreases by 1/2% and 0.07 C from 10% more leaf area from the greening of the earth.

According to COP27 the carbon reduction pledges by 2050 looks like this:

The sum of all pledges means a 15% reduction in the RISE of C02 between now and 2050, leading to a reduction in temperature rise from rising CO2 of 0.02C. In addition it will reduce the amount of temperature rise from the greening of the world by 0.006 C. the total temperature rise will be 1.574C or thereabout, still over the 1.5C target.

There is a better way.

The temperature rise since per-industrial times is caused by basically 3 factors: Greenhouse gases and water vapor increase: 23%, decreased reflection from decreased cloud cover: 65%, and decreased albedo due to the greening of the earth: 12%.

There are some disturbing trends in rain patterns around the world. This fall the four largest rivers for barge traffic all have severe limitations in their barge traffic volume due to low water, the Mississippi river in North America, the Rhine River in Europe, the Yang Tse Kiang River in Asia and the Parana River in South America. It seems to be world-wide. At the same time snowfall is increasing in the Arctic, leading to warmer winters and a little cooling in the summer since there is more snow to melt. Areas of the world is being desertified, lakes are drying up, aquifers are being depleted, and so some areas are drying up. These are the same areas where people love to live and use its water. The Great Salt Lake in Utah is down to a third of the size it had in the 1970’s, Lake Aral is nearly all gone, The Caspian Sea is again shrinking and Lake Chad in Africa is down to 20% of its size in the 1970’s.

Most of the earth displays an increase of leaf area, but there are areas in red that are becoming less green. The areas are: The American Southwest, The Pampas area of South America, a 100 mile band in Southern Sahara, part of East Africa, Madagascar, South East Africa, Western Australia, Part of the Volga region, Kazakhstan east of Lake Aral and various parts of China, and the Mekong river. These areas have this in common, the aquifers ate being depleted, the rivers are diminishing and some of them no longer reach the ocean, lakes are almost disappearing, but people still move to those areas “for the good climate”.

The areas so affected are about 900,000 sq miles of the American Southwest and about 3 million square miles in total to suffer from becoming more like a desert. The common theme of all these areas is depletion of the aquifers, rivers diminishing, lakes drying up and soil erosion.

The only part of the world US can control directly is The American Southwest. It can expect more frequent and longer droughts, since there is no amplification of clouds from the relatively cool and clean Pacific ocean, and the long term temperature trend is cooling. The Colorado River no longer feeds the Gulf of California with nourishment. The Colorado river used to supply all the water allocation for all the participating states, but around 2000 the water use had caught up with supply, and since then it has become much worse with demand far outstripping supply.

In addition the Great Salt Lake is now less than a third of the size it was in the 1970’s. A second level water shortage has been issued and for example Arizona will get a million Acre-feet lass per year than promised from the Colorado river. The aquifers will be further depleted leading to less rainfall and the few remaining springs will dry out. If nothing is done, the American southwest will become desertified.

Ironically, deserts have a higher albedo than green soil, so letting the American Southwest become a desert would have a cooling effect by the increasing albedo, but the effect from the disappearing clouds would have a far greater heating effect, so letting the American Southwest become a desert is not a solution to the problem.

However, the area subject to desertification is about 0.6% of the world’s land area and rising the albedo by 0.05 leads to a cooling down. The average albedo of the earth is 30%, and before desertification the albedo was 25%, this rises the albedo of the earth by 0.03%. The total reflection of sunlight from the earth is 22.9 W/m2, so 0.03% of that is 0.007 W/m2, which translates to a net temperature decrease of the world by 0.002C.

What congress is doing to solve the problem.

Congress has passed the anti-inflation bill that included over 300 billion to fight climate change, and it included more solar panels and wind turbine motors to be imported from China. The experience from Europe is that electricity from solar panels and windmills is 5.7 times as expensive as conventional power generation.

This analysis was done for 2019, before COVID. The situation is now much worse, with electricity rares up to 40 c/kWh, and that is with subsidies.

Even at the current increased European Gas prices, the estimated excess expenditures on Weather-Dependent “Renewables” in Europe is still very large:  $~0.5 trillion in capital expenditures and $~1.2 trillion excess expenditures in the long-term.

These simple calculations show that any claim that Wind and Solar power are now cost competitive with conventional fossil fuel (Gas-fired) generation are patently false.  The figures give an outline of the financial achievements of Green activists in stopping  fracking for gas in Europe, close on to $1.2 trillion of excess costs.

It would be better not to import any solar panels and wind power generators from China and let them pay for the extra cost rather than building more coal burning plants. After all they were planning to build over a thousand new plants between now and 2030, all legal under the Paris accord. This would benefit the world climate much more, since Chinese coal plants are far more polluting, since China has far less stringent environmental regulations than U.S.

U.S. uses 13.5% of the world’s coal, and eliminating U.S. CO2 emissions would in time reduce the world temperature by 0.026C, providing no other country, such as China and India would increase their use of Coal, which they are; to the total of 1300 new coal plants between now and 2030. This would raise global temperature by more than 0.06 C.

What congress should do instead.

a. What congress should do immediately.

  1. Immediately stop downblending U 233 and pass The Thorium Energy security act SB 4242a. See more here.

2. Remove Thorium from the list of nuclear source material. The half-life of Thorium232 is 14 billion years, so its radioactivity is barely above background noise. More importantly, while Thorium is fertile, it is not fissile and should therefore not be included in the list. This would make it far easier to mine rare earth metals, as long as the ore consists of less than 0.05% Uranium, but any amount of Thorium is allowed without classifying the ore “Source material”.

3. Separate nuclear power into 3 categories. a. conventional nuclear power. b. Thorium breeder reactors that make more U233 than it consumes, and c. Thorium reactors that reduce nuclear waste.

4. Stop buying solar panels from China. Stop buying wind turbine generators from China. Let them install those in China and pay 5 times as much for their electricity.

5. Immediately form a commission led by competent people, not politicians; to decide how to best expand the electric grid and to best harden it against electro-magnetic pulses, whether solar or nuclear and to safeguard it against sabotage.

6. Remove all subsidies on electric cars, solar panels and wind generators, but continue to encourage energy conservation.

7. Encourage research and development of Thorium fueled reactors, especially liquid salt reactors by drastically simplifying and speeding up the approval process. President Trump issued an executive order in the last month of his presidency EO 13972 specifying that the United States must sustain its ability to meet the energy requirements for its national defense and space exploration initiatives. The ability to use small modular reactors will help maintain and advance United States dominance and strategic leadership across the space and terrestrial domains. This EO should be expanded to include civilian small modular reactors, including Liquid salt Thorium reactors less than 200 MW, which are the only valid reactors for space exploration.

b. Longer term developments, but extremely urgent.

Of the long term warming of the globe of 1.2 C since the beginning of industrialization only 0.17 C is attributable to rising CO2, NH4 and NO2 levels, of which United states is currently responsible for 13.5% and decreasing, or 0.023C. The disappearance of clouds is responsible for twice as much globally or 0.33 C of which probably 1/6 is occurring in the American Southwest, causing an increase in temperature of 0.055C. However, the temperature rise in say the Grand Canyon has been in excess of 2 C,, and in the urban areas it has been even more. These are my long term suggestions:

Build a TransContinental Aqueduct. A realistic way to save Lake Mead and reverse the desertification of the American SouthWest.

The problem:

Lake Mead will be emptied in less than 10 years with the current usage pattern. Then what?

The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied. The so called winter pool level is nearing, after which no further power can be generated.

The aquifers in Arizona, especially in the Phoenix and Tucson area, and to some extent New Mexico and the dry part of Texas are being drawn down and are at risk of being exhausted.

The Salton Sea in the Imperial Valley of California is maybe the most polluted lake in all of U.S.A. It is even dangerous to breathe the air around it sometimes. The area contains maybe the largest Lithium deposit in the world.

The Colorado River water is too salty for good irrigation .

The Colorado river no longer reaches the Gulf of California. Fishing and shrimp harvesting around the Colorado River Delta is no more.in less than 10 years with the current usage pattern. Then what?

The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.

40 million people depend on the Colorado River for drinking water. The population is still rising rapidly in the West. Will they have water in the future.

Except for California there is not much pumped Hydro-power storage in the American Southwest.

Texas has plenty of wind power, but no pumped hydro-power storage. This makes it difficult to provide peak power when the sun doesn’t shine and the wind doesn’t blow. Nuclear power is of no help, it provides base power only. Peak power has to come from coal and natural gas plants.

New Mexico has some ideal spots for solar panels, but no water is available for pumped storage.

Arizona has a surging population, wind and solar power locations are abundant, but no pumped hydro-power storage.

Arkansas and Oklahoma have a good barge traffic system. This proposal will increase flood control and improve barge traffic by increasing the maximum barge draft from 9 feet to 12 feet and during dry periods reverse the flow of the Arkansas River. The Arkansas river yearly water flow is nearly double that of the Colorado River.

The solution:

Build a transcontinental aqueduct from the Mississippi River to the Colorado River capable of transporting 12 million acre-ft of water yearly through Arkansas, Oklahoma, Texas, New Mexico and Arizona. It will be built similar to the Central Arizona Project aqueduct, supplying water from the Colorado river to the Phoenix and Tucson area, but this aqueduct will be carrying four times more water over four times the distance and raise the water nearly twice as high before returning to near sea level. The original Central Arizona Project cost $4.7 billion in 1980’s money, the Transcontinental Aqueduct will in Phase 1 cost around $200 Billion in 2022 money applying simple scaling up principles.

The Mississippi River has a bad reputation for having polluted water, but since the clean water act the water quality has improved drastically. Fecal coli-form bacteria is down by a factor of more than 100, the water is now used all the way down to New Orleans for drinking water after treatment. The lead levels are down by a factor of 1000 or more since 1979. Plastic pollution and pharmaceutical pollution is still a problem, as is the case with most rivers. The Ph is back to around 8 and salt content is negligible. Mississippi water is good for irrigation, and usable for drinking water after treatment. The Arkansas River is used as a drinking water source.

But the aqueduct will do more than provide sweet Mississippi water to the thirsty South-west, it will make possible to provide peak power to Texas, New Mexico and Arizona. In fact, it is so big it will nearly triple the pumped Hydro-power storage for the nation, from 23 GW for 5 hours a day to up to 66 GW when fully built out.

The extra pumped hydro-power storage will come from a number of dams built as part of the aqueduct or adjacent to it. The water will be pumped from surplus wind and solar power generators when available. This will provide up to 50 GW of power for 5 hours a day. If not enough extra power has been generated during the 19 pumping hours, sometimes power will be purchased from the regular grid. The other source of pumped hydro-power storage is virtual. There will be up to 23 GW of LFTR (Liquid Fluoride salt Thorium Rector) power stations strategically stationed along the waterway providing pumping of water for 19 hours and providing virtual hydro-power output for the remaining 5, when the aqueduct is fully built.

These 43 GW of hydro-power capacity will be as follows: Oklahoma, 0.2 GW; Texas, 18,5 GW (right now, Texas has no hydro-power storage, but plenty of wind power); New Mexico, 10.5 GW; Arizona 13.6 GW. In Addition, when the Transcontinental Aqueduct is fully built out, the Hoover dam can provide a true 2.2 GW hydro-power storage by pumping water back from Lake Mojave; a 3 billion dollar existing proposal is waiting to be realized once Lake Mead is saved.

The amount of installed hydroelectric power storage is:

U.S. operating hydroelectric pumped storage capacity

Most hydroelectric pumped storage was installed in the 70’s. Now natural gas plants provide most of the peak power. This aqueduct will more than double, triple the U.S. pumped peak storage if virtual peak storage is included. By being pumped from surplus wind and solar energy as well as nuclear energy it is true “Green power”. Some people like that.

What follows is a description of each leg of the aqueduct. Each leg except legs 9 and 10 ends in a dam, which holds enough water to make each leg free to operate to best use of available electricity and provide peak power on demand.

Leg 1 of the Trans-Continental aqueduct. From the Mississippi river to the Robert S. Kerr Lock and dam on the Arkansas River. Total length 15miles of aqueduct and 305 miles of river. Cost of water 300 kWh per acre-ft.

Leg 2 of the Transcontinental Aqueduct: From the Robert S. Kerr Lock and dam to the Eufaula Dam on the Canadian River. Total length 42 miles of lake and river. Cost of water 585 kWh per acre-ft.

Leg 3 of the Transcontinental aqueduct. From the Eufaula Dam to Ray Roberts Lake. Total length 42 miles of lake and 125 miles of aqueduct. Cost of water 900 kWh per acre-ft.

Leg 4 of the Transcontinental Aqueduct. From Lake Ray Roberts to the Brad Dam (to be built). Total length 205 miles of aqueduct. Cost of water 1735 kWh per acre-ft.

Leg 5 of the Transcontinental aqueduct. From Brad dam to Deadman Draw dam and pumped storage power plant. Total length 5 miles of lake and 60 miles of aqueduct. Cost of water 2425 kWh per acre-ft. In Phase 2 can provide up to 4 GW of pumped storage power.

Leg 6 of the Transcontinental aqueduct. From Deadman Draw dam and pumped storage power plant to Buffalo Soldier Draw dam and optional pumped storage plant.Total length 205 miles of aqueduct. Cost of water 3711 kWh per acre-ft.In Phase 2 can provide up to 4.8 GW of pumped storage power.

Leg 7, leg 8 and leg 9 of the Transcontinental aqueduct. From the Buffalo Soldier Draw dam to the highest point of the aqueduct 10 miles into Arizona. Leg 7 is 255 miles. Cost of water 6132 kWh per acre-ft. Leg 8 is 125 miles. Cost of water is 5705 kWh per acre-ft. Leg 9 is 160 miles. Cost of water is 6605 kWh per acre-ft.

The Transcontinental Aqueduct. Leg 10: The highest pumping station in Arizona to San Carlos Lake, a distance of 93 miles. Cost of water 5205 kWh per acre-ft.

The Transcontinental Aqueduct. Leg 11: From San Carlos Lake to East Diversion dam, a distance of about 60 miles. Cost of water 4905 kWh per acre-ft.

The Transcontinental aqueduct Leg 12: From the East Diversion dam to connecting to the Central Arizona aqueduct 45 miles WNW of Phoenix. Phase 1 is 20 miles of aqueduct and 85 miles of River. Cost of water is 5105 kWh per acre-ft. Phase 2 adds 130 miles of aqueduct . The cost of water is 5065 kWh per acre-ft.

The Transcontinental aqueduct, Leg 13: From the New Arlington dam to the Colorado River. Leg 13, phase 1 is 130 miles of river.Cost of water is 5105 kWh per acre-ft. Phase 2 adds 15 miles of aqueduct . The cost of water is 5130 kWh per acre-ft.

The Transcontinental Aqueduct, spur 14: The Wilson Canyon Solar farm and pumped storage plant. Can supply 13.5 GW of pumped storage power.

The Transcontinental Aqueduct, spur 15: The Poppy Canyon Solar farm and pumped storage plant. Can provide up to 28 GW of pumped storage power.

The Transcontinental Aqueduct will serve the Lower Colorado River Basin, Southern New Mexico and Western Texas. It will pump up to 12 million acre-ft of water annually from the Arkansas river and Mississippi river all the way to southern Colorado River.

The total electricity needed to accomplish this giant endeavor is about 60 billion kWh annually. or about one and a half percent of the current US electricity demand. In 2020 the US produced 1,586 billion kWh from natural gas, 956 from coal, 337.5 from wind and 90.9 from solar.

For this giant project to have any chance of success there has to be something in it to be gained from every state that will be participating. Here are some of the benefits:

Arizona: Arizona needs more water. The water from Mississippi is less saline and better suited for agriculture and the people growth makes it necessary to provide more water sources. Right now the aquifers are being depleted. Then what? One example: The San Carlos lake is nearly dry half the time and almost never filled to capacity. With the aqueduct supplying water it can be filled to 80 +- 20% of full capacity all the time. In the event of a very large snow melt the lake level can be reduced in advance to accommodate the extra flow. Likewise during Monsoon season the aqueduct flow can be reduced in anticipation of large rain events. Arizona together with New Mexico has the best locations for solar power, but is lacking the water necessary for hydro-power storage. This proposal will give 600 cfs of water to Tucson, 3,100 cfs to the Phoenix area and 3,900 cfs to the lower Colorado River in Phase 1. I phase 2 it will add 3,100 cfs to Lake Havasu and an extra 4,700 cfs to the lower Colorado River. It will also also add 28 GW of hydro-power storage capable of adding 140 GWh of electric peak power daily when it is fully built out in Phase 3.

Arkansas: The main benefit for Arkansas is better flood control and river control of the Arkansas River and allowing it to deepen the draft for canal barges from 9,5 feet to 12 feet, which is standard on the Mississippi river.

California: The water aqueduct serving Los Angeles will be allowed to use maximum capacity at all times. Additional water resources will be given the greater San Diego area. The Imperial valley will be given sweet Mississippi and Arkansas River water, which will improve agriculture yield. The polluted New River will be cut off at the Mexico border. There will be water allocated to the Salton Sea. There is a proposal to mine the world’s largest Lithium ore, mining the deep brine, rich in Lithium. (about a third of the world supply according to one estimate). This requires water, and as a minimum requirement to allow mining in the Salton Sea the water needs to be cleaned. This requires further investigation, but the area around the Salton Sea is maybe the most unhealthy in the United States. It used to be a great vacation spot.

Mexico: During the negotiations about who was going to get the water in Lake Mead Mexico did not get enough water, so they have been using all remaining water for irrigation, and no water is reaching the ocean anymore. In addition the water is too salty for ideal irrigation. This proposal will provide sweet Mississippi and Arkansas River water to Mexico, ensure that some water reaches the Colorado river delta. This will restore the important ecology and restore aquatic life in the delta and the gulf. The town of Mexicali will get some water in exchange for shutting off New River completely.

Nevada: Las Vegas is a catastrophe waiting to happen unless Lake Mead is saved. With this proposal there will be ample opportunity to make the desert bloom.

New Mexico: The state is ideally suited for solar panels. In addition to give much needed water to communities along the length of the aqueduct, it will provide 13.5 GW of pumped storage power to be made available at peak power usage for up to 5 hours a day.

Oklahoma: The main advantage for Oklahoma is a much improved flood control. It will provide the same advantage for river barge traffic as benefits Arkansas.

Texas: The state has a big problem. It has already built up too much wind power and can not give up their coal burning power plants until the electricity is better balanced. They have no hydro-electric power storage at all, and we saw the result of that in a previous year’s cold snap. This proposal will give the Texas electric grid 8.8 GW of hydro-electric power for up to 5 hours a day.

Utah: The state will no longer be bound to provide water to Lake Mead, but can use all of its water rights for Utah, especially the Salt Lake City region, and to reverse the decline of the Great Salt Lake that is now shrunk to less than a third of the size it had in the 1970’s.

Wyoming: The state will be free to use the water in the Green River and all the yearly allocated 1.05 million acre-feet of water can be used by the state of Wyoming.

The cost to do all these aqueducts will be substantial, but it can be done for less than 350 billion dollars in 2022 money, and that includes the cost of providing power generation. Considering it involves 40 million people dependent on the Colorado River now and another 10 million east of the Rocky Mountains, it is well worth doing, much more important to do than other “green” projects, since it will save the American Southwest from becoming an uninhabitable desert.

This proposed solution cannot be made possible without changing our approach to power generation. The mantra now is to solve all our power needs through renewables. Texas has shown us that too much wind power without any hydroelectric power storage can lead to disaster. In addition, windmills kill birds, even threatening some species, such as the Golden Eagle and other large raptors that like to build their aeries on top of the generators. Solar panels work best in arid, sunny climate, such as Arizona and New Mexico, but the panels need cooling and cleaning to work best, and that takes water. They are even more dependent on hydro-power storage than wind. The transcontinental aqueduct will triple the hydro-electric power storage for the nation. Without pumped power storage we still need all the conventional power generation capacity for when the sun doesn’t shine and the wind doesn’t blow.

Conventional Nuclear power plants doesn’t work in most places since they depend on water for their cooling, and most of these aqueducts pump water in near deserts, and there would be too much evaporation losses to use water from the aqueducts for cooling.

The only realistic approach would be to use LFTR power plants. (Liquid Fluoride Thorium Reactors). There are many advantages for using LFTR. Here are 30 reasons why LFTRs is by far the best choice.

For this project to succeed there must be developed a better way to build SMRs (Small Modular Reactors, less than 250 MW) more effectively. The price to build a LFTR plant should be less than $2.50 per watt. While the LFTR science is well understood, the LFTR engineering is not fully developed yet, but will be ready in less than 5 years if we get to it. In the mean time there should be built one or more assembly plants that can mass produce LFTR reactor vessels small enough so they can be shipped on a normal flatbed trailer through the normal highway system. My contention is that a 100 MW reactor vessel can be built this way and the total cost per plant will be less than 250 Million dollars. To save the American Southwest we will need about 350 of them, or 87,5 billion dollars total. This cost is included in the total calculation. There will be many more of these plants produced to produce all the electric power to power all the electric vehicles that are going to be built. This is the way to reduce fossil fuel consumption. Just switching to electric vehicles will not do the trick. The electric energy must come from somewhere. To convert all cars and trucks and with unchanging driving habits will require another 600 GW of generating capacity by 2050, our present “net zero emissions” goal.

To do this project we need cooperation from all states in providing eminent domain access. The Federal government will need to approve LFTR as the preferred Nuclear process and streamline approval process from many years to less than one year.

Some of the power will come from solar panels and wind turbines, which will reduce the need for LFTR’s. One tantalizing idea is to cover the aqueduct with solar panels. This will do many things, it will not take up additional acreage, water needed to keep the panels clean is readily available, and can even be used to cool the solar panels if economically beneficial. The area available is 152 feet times 1100 miles = 1.6 billion square feet, and one square foot of solar panel produces around 1 W, which means covering the aqueduct with solar panels would produce 882 MW of power. It would also reduce evaporation. The second source of energy will be 165,000 5kW vertical wind turbines producing 825 MW when the wind is blowing. The rest of the power will cme from LFTRs. This idea requires further analysis. Here is one possible implementation of the idea:

This image has an empty alt attribute; its file name is aqueductcrossection.jpg

C. Further developments to save the American Southwest.

When the Transcontinental aqueduct is well under way it is time to start the Trans-Rocky-Mountain Aqueduct. in a few years the population growth will require again to save Lake Powell and Lake Mead, and rejuvenate the American South-west.

The problem:

  1. Lake Powell and Lake Mead will be emptied in less than 10 years with the current usage pattern. Then what?
  2. The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.
  3. the aquifers are drawn down everywhere in the Southwest, but also the Ogallala Aquifer in Colorado and Kansas, and are at risk of being exhausted.
  4. The Colorado River water is too salty for good irrigation .
  5. The Colorado river no longer reaches the Gulf of California. Fishing and shrimp harvesting around the Colorado River Delta is no more.
  6. 40 million people depend on the Colorado River for drinking water. The population is still rising rapidly in the West. Will they have water in the future? Think 20 million future population growth in the next 40 years, people want to move there even with the current water problems.

The solution:

Build a Trans-Rocky-Mountain aqueduct from the Mississippi River to the San Juan River. In the first 391 miles the aqueduct joins the McClellan–Kerr Arkansas River Navigation System by adding the capability of pumping 7,500 cfs of water through 16 dams that service the locks. This will lead to reversing the flow of water during low flow. This also facilitates the navigation channel to be deepened from 9 feet to 12 feet to service fully loaded barges, a step authorized but not funded by Congress. The Arkansas river will then be capable of transporting 8 million acre-ft of water yearly through Arkansas, Oklahoma, Kansas, Colorado and New Mexico, supplying water from the Colorado river to Lake Powell. All that is needed to do in this stage is provide the dams and locks with a number of pumps and pump/generators to accommodate this, at a cost of less than 2 billion dollars. The next phase is pumping up water in the Arkansas river for 185 miles. To accommodate this there will be 17 small control dams built that are closed when normal pumping occurs and open during flood conditions. The cost for this segment, including pumps will be less than 3 billion dollars. The third segment is a 465 mile aqueduct to cross the Rocky Mountains much like the Central Arizona project but this aqueduct will carry three times more water 1.27 times the distance and raise the water four times higher. The original Central Arizona Project cost $4.7 billion in 1980’s money, the aqueduct part of the Trans-Rocky-Mountain aqueduct will cost around $50 Billion in 2021 money applying simple scaling up principles.

Power requirements for the 3 stages are 310 MW for the canal stage, 600MW for the river stage and 6.2 GW for the aqueduct stage. The aqueduct stage can be controlled by the power companies to shut off the pumps and provide 6.4 GW of virtual peak power for up to 5 hours a day on average, and each leg can be controlled individually since they are separated by large dams. There will be 64 one hundred MegaWatt LFTR (Liquid Fluoride salt Thorium Rector) power stations strategically stationed along the waterway providing pumping of water for 19 hours and providing virtual hydro-power output for on average 5 hours. There will also be 910 MW of power needed that is controlled by the river authorities.

The building cost of providing LFTR power should be around $2.50 per Watt of installed energy if a plant is built to manufacture via an assembly line a standardized version of 100 MW LFTR reactor core vessels assemblies capable of being transported on truck to the installation point. The total power cost should then be 16 billion dollars to build, and 5 cents per kWh or about 2.5 billion dollars a year to provide power.

The Mississippi River has a bad reputation for having polluted water, but since the clean water act the water quality has improved drastically. Fecal coli-form bacteria is down by a factor of more than 100, the water is now used all the way down to New Orleans for drinking water after treatment. The lead levels are down by a factor of 1000 or more since 1979. Plastic pollution and pharmaceutical pollution is still a problem, as is the case with most rivers. The Ph is back to around 8 and salt content is negligible. Mississippi water is good for irrigation, and usable for drinking water after treatment. The Arkansas River water quality is pretty good, good enough in Kaw Lake to be used for municipal water supply. Nitrates and phosphates are lower than in most Eastern rivers, Ph is around 8 and coli-bacteria low.

Most hydroelectric pumped storage was installed in the 70’s. Now natural gas plants provide most of the peak power. This aqueduct will add 6.4 GW to the U.S. pumped peak storage if virtual peak storage is included. By being pumped from surplus wind and solar energy as well as nuclear energy it is true “Green power”. Some people like that.

What follows is a description of each leg of the aqueduct. Legs 3, 4, 5 and 6 ends in a dam, which holds enough water to make each leg free to operate to best use of available electricity and provide peak power on demand.

Leg 1 of The Trans-Rocky-Mountain aqueduct. From the Mississippi river to Webbers Falls lock and dam. Total length 15miles of aqueduct and 335 miles of river. Cost of water 333 kWh per acre-ft.

Leg 2 of The Trans-Rocky-Mountain aqueduct. From Webbers Falls to Keystone Dam, a distance of about 75 miles that is river and 25 miles, which is canal. Cost of water 593 kWh per acre-ft.

Leg 3 of the Trans-Rocky-Mountain aqueduct. From Keystone Dam to Kaw Dam.The Keystone Lake is 38 miles long and the river part is about 110 miles. Cost of water 901 kWh per acre-ft.

Leg 4 of the Trans-Rocky-Mountain aqueduct. From Kaw Lake to John Martin Reservoir, a distance of about 200 miles. Cost of water 4,446 kWh per acre-ft.

Leg 5 of the Trans-Rocky-Mountain aqueduct. From John Martin Reservoir to Trinidad Lake, a distance of about 120 miles. Cost of water 7,300 kWh per acre-ft.

Leg 6 of the Trans-Rocky-Mountain aqueduct. From Trinidad Lake to Abiquiu Reservoir, a distance of 90 miles. Cost of water 7,910 kWh per acre-ft.

Leg 7 of the Trans-Rocky-Mountain aqueduct. From the Abiquiu Reservoir to the San Juan River, a distance of 55 miles. Cost of water 7,395 kWh per acre-ft.

Once these two aquifers are completed and running successfully filling the rivers again it is time to refill the aquifers. This requires a change in the water rights laws. The rain water is a property of the land and can be locally retained via small catch basins and ditches. This will restore the aquifers, reduce soil erosion and rejuvenate vegetation as has been successfully done in the dry parts of India. They needed to capture the monsoon rains, and so does Arizona and New Mexico.

One more thing:

Build a South Platte River aqueduct. This will solve the water needs for the greater Denver ares and help preserve the northern Ogallala aquifer.

The rise in CO2 is on balance positive, it has already helped to keep 2 billion people from starvation. With food famine coming the very worst thing we can do is declare a climate emergency and unilaterally reduce our electric supply eliminating much of our fossil fuel source to produce electricity and at the same time push electric cars.

This cannot be solved unless there will be a deep commitment to Nuclear power, streamline government permit processes and let private industry find the best solutions without government playing favorites and slowing down the process. Regular U235 power is not sufficient for this, Only Thorium power will do, and there are many reasons for it. Here are 30 of them:

 1. A million year supply of Thorium available worldwide.

 2. Thorium already mined, ready to be extracted.

 3. Thorium based nuclear power produces 0.012 percent as much TRansUranium waste products as traditional nuclear power.

 4. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.

 5. Thorium nuclear power is only realistic solution to power space colonies.

 6. Radioactive waste from an Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick.

 7. Thorium based nuclear power is not suited for making nuclear bombs.

 8. Produces isotopes that helps treat and maybe cure certain cancers.

 9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.

10. Molten Salt Liquid Fluoride Thorium Reactors cannot have a meltdown, the fuel is already molten, and it is a continuous process. No need for refueling shutdowns.

11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

12. Atmospheric pressure operating conditions, no risk for explosions. Much safer and simpler design.

13. Virtually no spent fuel problem, very little on site storage or transport.

14. Liquid Fluoride Thorium Nuclear reactors scale beautifully from small portable generators to full size power plants.

15. No need for evacuation zones, Liquid Fuel Thorium Reactors can be placed near urban areas.

16. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

17. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

18. Russia has an active Thorium program.

19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

 20. China is having a massive Thorium program.

21. United States used to be the leader in Thorium usage. What happened?

22. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

23. With a Molten Salt Reactor, accidents like Chernobyl are impossible.

24. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

25. Will produce electrical energy at about 4 cents per kWh.

26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles.

27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed.

28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

29. President Donald J. Trump on Jan. 5 2021 issued an Executive Order on Promoting Small Modular Reactors for National Defense and Space Exploration. Only Liquid fluoride thorium reactors can meet all the needs.

30. We have to switch from Uranium to Thorium as nuclear feed-stock. We are running out of domestic Uranium.

My favorite Thorium power plant would be a 100 MW Liquid Fluoride Thorium Reactor (LFTR). It is also called a Small Modular Reactor (SMR). It is small enough that all core elements will fit in three standard truck containers and be made on an assembly line. It can be constructed many ways, one is a normal fast breeder reactor, another is adapted to burn nuclear waste. The cost for these reactors, when built on an assembly line will be less than $2 per Watt. They can be placed anywhere, since they are inherently safe, no need for an evacuation zone. Since they are operating at 500C temperature with either gas or liquid lead as heat transfer media there is no need for water as a cooling medium. When mass produced it will be able to produce electricity at 5 c per kWh and the mining to produce the materials is a fraction of what is needed for solar, and wind power, especially when taking into account the intermittent nature of these power sources.The only thing better would be fusion power, but that is at least 20 years away as a power producing source, but it is coming. These are exciting times!

The American Southwest can still be restored.

The case for Thorium 28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

US reveals plan for nuclear power plant on the MOON that could power lunar Space Force base

NASA astronauts could one day live on the Moon inside a base powered by a lunar nuclear plant.

That’s according to plans shared by the US Department of Energy, which hopes to have the sci-fi power station up and running by 2027.

Nasa may one day build a nuclear power plant on the Moon.

The DoE on Friday put out a request online for ideas from the private sector on how to build such a contraption.

Dubbed a fission surface power system, the station could help man survive harsh environments on the Moon, Mars and beyond.

“Small nuclear reactors can provide the power capability necessary for space exploration missions of interest to the Federal government,” the DoE wrote in the notice published Friday.

Nasa has plans to put astronauts on the Moon in 2024 – the first manned mission to the lunar surface in almost five decades.

Nasa plans to establish a permanent base on the Moon in 2028

 
Nasa plans to establish a permanent base on the Moon in 2028.

The space agency has said it wants to set up a permanent base on Earth’s rocky neighbour in 2028. The base will help launch future missions to Mars.

Questions remain over what will power the base. Nasa would like to use solar panels, but the most power is needed during the 14 day lunar night every month, so nuclear power is the only practical solution.

It seems the space agency, working with the The Idaho National Laboratory and Department of Energy, is at least exploring the nuclear option.

According to the notice published to the DoE’s website, officials are looking for ideas on how to build a mostly autonomous lunar power station.

Only Molten Salt Thorium reactors would fit the bill.

It should work for 10 years at full power and boast a modular design that allows power units to connect together like Lego bricks.

Would-be designers are asked to whip something up that can survive the surface of Mars without modification.

They can be made very compact and modular

The case for Thorium. 11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control. This is another beauty of the molten salt design. The temperature coefficient is highly negative, leading to a safe design enabling simple and consistent feedback. What does that mean?  It means that when the temperature of the fissile core rises, the efficiency of the reaction goes down, leading to less heat generated. There is no risk for a thermal runaway. In contrast,  graphite moderated generators can have a positive temperature coefficient which leads to complicated control, necessitating many safety circuits to ensure proper startup, operation and shutdown. Their worst failure mode is they go prompt critical, and no containment vessel can contain the explosion that would occur, so they were built without one. There have been several major accidents in graphite moderated reactors, with the Windscale fire and the Chernobyl disaster probably the best known.

Climate change is real and positive for the environment. The real challenge is clean and available water in the 10-40 region.

The safe, clean water essential to all life is rapidly running out in much of the world. Yet the politicians are concentrating on air pollution in the form of CO2 and methane as if a catastrophe is about to hit us. Western US, most of the 10-40 window (the area between the 10th and the 40th latitude), Australia and western South America are using up its safe and drinkable water supply much faster than it is replenished. In addition, what is left is getting polluted.Let me give you an anecdotal example.

More than twenty years ago I was part of a team that made wet processing equipment for making computer chip wafers. It involved cleaning and etching using isopropyl alcohol, hydrocloric, sulphuric, and hydrofluoric acid as well as Ozone, all potent stuff. To collect the used chemicals we had designed a 5-way output port, so the chemicals could be collected separately after use. The equipment was made and shipped off to South Korea. It was assembled in a brand new, state of the art positive air pressure clean room facility. The processing machine was installed by the Koreans, but under the 5-way port was a large funnel, going to the drain and directly out in the sewer.

A couple of years before, in the US we had a valve in a similar machine that sprung a leak, so a small amount of hydrofluoric acid got discharged into the sewage. This poisoned the sewage processing plant, and a large fine was levied. No such worry in Asia. The sewage went directly out in the ocean to be diluted. How could they be persuaded not to dump the alcohol and acid directly into the sewage? There were no environmental regulations prohibiting them from doing so. The only argument that persuaded them was economic. It was cheaper to collect the used alcohol and hydrofluoric acid, clean and reuse it rather than dump it. Unfortunately sulphuric acid and hydrocloric acid was too cheap to buy new, so that was still dumped. This is the mindset of many developing countries.

In China many of these facilities are inland, so large water aquifers get poisoned for centuries to come. These are the people we up to now have entrusted with our future production of just about everything, since they do not have the environmental protection laws they can produce the stuff much cheaper. But it comes at a price. The yellow river now does not anymore reach the ocean for part of the year.

As I have explained in a previous post: https://lenbilen.com/2020/02/28/climate-change-is-real-and-is-caused-by-rising-co2-levels-leading-to-less-extreme-weather-this-is-on-balance-good-for-the-environment/  global warming is real, but it only occurs in temperate regions, and predominantly in the winter. Summertime maxima are actually decreasing slightly, so the net effect of climate change is that it is positive for the environment.

Not so with water pollution. It is a much bigger and dangerous problem, and only by shifting our attention to it and from CO2 can we begin to solve it. To clean up the environment will take a lot of energy, and the only solution I see is switching our electric energy supply away from fossil fuel and to Thorium based nuclear energy. Here are

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

President Trump promises innovative approaches to eliminate nuclear waste. Thorium is the answer! A limerick.

The nuclear waste meant for Yucca

would destine Nevada the sucka

But with Thorium we rid

us of waste that is hid

No need for that waste to be trucka!

Where is the storage for spent nuclear fuel and other nuclear waste now? Look at the map, it is scary.

 

 

 

 

 

 

 

And this is just the U.S. installations!

Many years ago I studied Engineering at Chalmers’ University in Sweden and I thought I would become a nuclear engineer. Sweden had at that time a peaceful heavy water based nuclear power program together with Canada and India. The advantage with heavy water as moderator is that it can use natural, un-enriched Uranium. One of the end products is of course Plutonium 239, the preferred material to make nuclear bombs, but it could also use Thorium, and the end product is then Plutonium 238, used in space exploration, and we were dreaming big. One of the advantages of Thorium as fuel is that it produces about 0,01%  of trans-Uranium waste compared to Uranium as fuel. About that time the U.S. proposed we should abandon the heavy water program and switch to light water enriched Uranium based nuclear power. They would sell the enriched Uranium, and reprocess the spent fuel at cost. They also had the ideal final resting place for the radioactive waste products in Nevada. This was an offer the Swedish government could not refuse. This was in the 1960’s! India on the other hand did refuse, and they eventually got the nuclear bomb. In disgust I switched my attention back to control engineering.

 

 

 

What did President Trump mean with innovative approaches?

This is where Thorium comes in!

Here is a list of

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

Look carefully at note 17. We can do better than Russia!

One more reason to switch to Thorium as feed-stock for nuclear power.

Uranium is the feed-stock for nuclear power. It is also the material necessary to make nuclear bombs.

The United States has 138,200 tonnes of Uranium reserves recoverable at less than $260 per kilogram, 1.9% of the world total.

The United States has, as of 2014, produced 343,075 tons of Uranium, or about 13% of the world total.

The United States consumed in 2016 18,69 tons of Uranium, about 29% of the world total, about 90% of which was imported.

Which brings up the following question: Why did the Obama administration sell 20% of our proven reserves of this strategically important material to Russia?

It is of utmost importance to immediately restart the development of nuclear reactors that use Thorium as its feed-stock.

The other 22 reasons to switch to Thorium are listed here:

https://lenbilen.com/2017/07/14/twenty-two-reasons-to-rapidly-develop-thorium-based-nuclear-power-generation/

A Climate Realist’s (not so) short Answers to Hard Questions About Climate Change. Question 7 (of 16) Will a tech breakthrough help us?

NOV. 28, 2015 gave his answers to 16 questions in the N.Y. Times regarding Climate Change. This Climate realist added his answer.

 Answers to Question 1: How much is the planet heating up?

Answers to Question 2. How much trouble are we in?

Answers to Question 3. Is there anything I can do?

Answers to Question 4. What’s the optimistic scenario?

Answers to Question 5. Will reducing meat in my diet help the climate?

Answers to Question 6. What’s the worst-case scenario?

Justin Gillis answer to Question7. Will a tech breakthrough help us?

Even Bill Gates says don’t count on it, unless we commit the cash.

As more companies, governments and researchers devote themselves to the problem, the chances of big technological advances are improving. But even many experts who are optimistic about technological solutions warn that current efforts are not enough. For instance, spending on basic energy research is only a quarter to a third of the level that several in-depth reports have recommended. And public spending on agricultural research has stagnated even though climate change poses growing risks to the food supply. People like Bill Gates have argued that crossing our fingers and hoping for technological miracles is not a strategy — we have to spend the money that would make these things more likely to happen.

My answer to Question7. Will a tech breakthrough help us?

The CO2 increase is already showing its benefits by increasing harvests, forest growth and especially greening grasslands by more than 11%. The greening of the earth is real. See fig:In addition plants use less water to perform photosynthesis as CO2 levels increase.

But we need technological breakthrough to clean up our environment and  provide enough water for a thirsty planet, especially in the 10/40 window. Nearly all large cities in that area suffer a shortage of water. In Teheran the water table is sinking by 6 feet a year, and in Mexico City things ate just as bad. Southern California and Las Vegas depend to a large extent on water from Lake Mead, and unless checked Lake Mead is being drained at an alarming rate, (this winter being an exception).

Making clean water and cleaning up the environment takes a lot of energy, so it would be good to check from where the world gets its energy.

More than three quarter of all energy comes from fossil fuel, less than 0.1% comes from solar panels. To tenfold solar panels will not help much, hydropower is limited, ethanol competes with the food supply, only drastic action will change the situation. May I suggest to switch all electricity production now generated by coal and oil to nuclear power, but not any nuclear power, switch to Thorium based nuclear power generation. Until that is done it makes no sense to use electric automobiles and trucks except in special circumstances. There is a million year supply of Thorium, and Thorium based nuclear energy has only 0.01% of the long term nuclear waste of Uranium based nuclear energy.

Don’t believe me? Check out https://lenbilen.com/2012/02/15/eleven-reasons-to-switch-to-thorium-based-nuclear-power-generation/  and https://lenbilen.com/2012/02/15/eleven-more-reasons-to-switch-to-thorium-as-nuclear-fuel/

Then we can tackle the real problems, such as real (not “carbon”) pollution, water, energy distribution, electrification of the developing world, all worthwhile endeavors.

Answers to Question 8. How much will the seas rise?

Answers to Question 9. Are the predictions reliable?

Answers to Question 10. Why do people question climate change?

Answers to Question 11. Is crazy weather tied to climate change?

Answers to Question 12. Will anyone benefit from global warming?

Answers to Question 13. Is there any reason for hope?

Answers to Question 14. How does agriculture affect climate change?

Answers to Question 15. Will the seas rise evenly across the planet?

Answers to Question 16. Is it really all about carbon?

 

Nuclear power and earthquakes. How to make it safer and better.

The earthquake that hit Japan on March 11 caused enough damage to at least 11 of Japan’s 55 nuclear reactors that they will have to be repaired before power production can resume. Three reactors are so badly damaged that they are releasing short term radioactive gases. Three reactors have suffered a significant hydrogen explosion from released gases from exposed and overheated fuel rods and much secondary damage has occurred.  Three reactors are now in a stage of a partial meltdown, they will never be restarted again and the radiation poisoning the environment will last for millennia. In addition there was a fire in the spent fuel compartment of a fourth reactor releasing much radiation.

This is the problem with Uranium based nuclear power generation. These particular reactors are of the GE Mark-1 type, the design is from the 60’s, and there has been complaints the safety updates and inspections have been falsified. They were designed to withstand a 7.0 earthquake, further reinforced by the Japanese to an 8.2 earthquake. The tsunami wall around the complex was built 30 feet high, but the tsunami was 39 feet. Be that as it may, the tsunami took out the backup generators and the earthquake was severe and sudden enough that some of the SCRAM-rods could have been jammed. Time will tell what the failure mode really was. We seem to have a significant safety problem with nuclear power.

Is there a better way? Let us look at the history of nuclear power. Fission from Uranium 235 was confirmed in  1938 and fission from U-233 was discovered in 1942. During that time WWII was raging, and the Germans had a head start with many superior nuclear scientists. Some had fled to the U.S. but many remained. Germany had captured Norway and there was excess hydroelectric power available in Rjukan so they started to manufacture heavy water. When they had made a whole railroad container car of heavy water , the “Heroes of Telemark” managed to sink the ferry it was transported on and the German program was set back, probably by a year.

Meanwhile in the U.S. the Manhattan Project was going on. They used brute force to separate out enough U-235 out of natural Uranium. Copper was in short supply so they could not get enough to make all the electromagnets necessary for the separation. Not to worry they availed themselves of the silver in Fort Knox, making the best magnets the world has ever seen.

Germany capitulated May 5 1945, but not Japan and on August 6 the first nuclear bomb was dropped, changing life as we see it forever. The nuclear nightmare had started. In the 50’s the Oak Ridge ‘boys’, (the laboratory, not the quartet) proved that nuclear power from Thorium was a realistic power source, but then the nation was more interested in making plutonium for nuclear bombs, and thorium based reactors did not produce enough bomb-making material. So Thorium was mothballed and the Uranium based reactors won the day. Thus the military industrial complex gained virtual monopoly on nuclear power, and that is why we are now in a terrible fix trying to promote nuclear power.

Sweden started a heavy water project but the light water reactors proved more economical and the development cycle much faster thanks to the military applications un US. India refused to join the nuclear proliferation treaty so they were shut out of access to enriched uranium and light water reactor technology. What to do? They built a heavy water reactor that uses natural uranium instead. The beauty of that process is that it produces even more plutonium than what is possible with light water reactors. So they built their nuclear bomb, pretending to promote peaceful nuclear energy. What if we instead had said: “Forget the bombs, go with Thorium instead?” Would there be any difference?

Thorium is four times more abundant than Uranium, and is found as a byproduct when mining rare earth and heavy metals. It is radioactive, but not more than the background radiation found everywhere. It is at the “banana level”, about as radioactive as bananas. Thorium is completely safe from terrorists, it cannot be used for anything sinister.  You only need very small quantities to fuel a reactor, and since it is a by-product it can be bought for the price of refining it, about $40 per Kg.  There is enough Thorium around to produce power at today’s level for over a million years.

Thorium can generate electricity at a cost of about 4 cents/kWh, even when all regulatory  requirements are satisfied. It generates 0.01% of the long term waste products of a Uranium reactor, and can even consume some of the waste-products from uranium based production. There is no risk of boil-overs since the fuel is already molten and at atmospheric pressure.

Sounds too good to be true? Let us take a look at the thorium reactors and see what they seem to promise.

1. Cheap and unlimited raw material.

2. Produces electricity at a cost of about 4 cents per kWh.

3. 0.01% waste products compared to a Uranium fast breeder.

4. Radioactive waste lasts max 300 years instead of a million years.

5. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

6. Produces Plutonium-238 needed for space exploration.

7. Does not produce Plutonium239 and higher used in Nuclear bombs.

8. Produces isotopes that helps cure certain cancers.

9. Earthquake safe.

10. No risk for a meltdown, the fuel is already molten.

11. Very high negative temperature coefficient leading to a safe control.

12. Atmospheric pressure operating conditions, no risk for explosions.

13. Scales beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed in urban areas.

15. Rapid response to increased or decreased power demands.

16. Lessens the need for an expanded national grid.

17. Russia and China is starting up a Thorium program

18. India has an active Thorium program.

19. Lawrence Livermore Laboratories is developing a small portable self-contained Thorium reactor capable of being carried on a low-bed trailer.

20. The need for a Yucca Mountain nuclear storage facility will eventually go away.

Obstacles in the path of Thorium reactors.

1. They are fast breeder reactors and fast breeders have a bad reputation for potential risks. The political resistance is enormous.

2. The military industrial complex (GE, Westinghouse, etc. ) has an enormous investment in Uranium based light water reactor technology. They would like to keep it that way.

3. The NRC is nearly impossible to move forward.

4. The political power landscape will change. Thorium based nuclear power is best left to regional control, and the world body trying to control all aspects of power generation would have a much harder time establishing total control.

5. Electricity will to a lesser degree be produced from coal, leaving the coal states with less clout.

Where do we go from here? India has for a long time been the only serious developer of Thorium based nuclear energy, a program that has been languishing too long since it has zero military applications, Thorium power produces 0.01% of the nuclear waste of conventional nuclear power, Thorium is abundant in Australia, India and the U.S. She should encourage cooperation on this type of nuclear energy. Thorium based generators can be made safe from earthquakes in a way no other nuclear energy can. Even though Thorium reactors are fast breeder reactors they are inherently stable and can be placed on barges in rivers. They are also superior in adapting to variations in power need, in short: we are way behind in developing the nuclear power for the future.

All of us should read up and try to understand the Thorium process and be ready to give a reason why we should not abandon nuclear power but change direction in this critical time. We need a new “Manhattan project” for energy. This time all the silver in Fort Knox will not save us, for we have lost the ability to do it by using brute force. Instead we will have to take a decentralized approach, developing small to medium size Thorium reactors near centers of power consumption. This will lessen our dependence on the National Grid, a grid that is vulnerable to terror attacks. Thorium reactors are not vulnerable to attacks, they can be neutralized and shut down with gravity alone, the one force that is always there.

Eleven reasons to switch to Thorium based Nuclear Power generation.

(The reasons keep piling up. A more updated 25 reasons are found here ).

Eleven reasons to switch to Thorium based Nuclear Power generation.

1. Cheap and unlimited raw material. There is enough Thorium around for many millennia, and not only that, it is a byproduct of mining heavy metals and rare earth metals The price is the cost of refining it, about $40/Kg.

2. 0.01% waste products compared to a Uranium fast breeder. The Thorium process has a much higher efficiency in fission than  the Uranium process. See the figure below.

Note the Plutonium in the Thorium cycle is Pu-238, which is in high demand.

3. Radioactive waste lasts max 300 years instead of a million years. Initially a Thorium reactor produces as much radioactivity as other nuclear reactors, since that is what generates the heat by converting mass to heat, but the decay products have a much shorter half-life. See the figure below.

4. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles. Thorenco LLC is developing a special reactor to purify spent nuclear fuel. This thorium converter reactor is designed to transmute and to “fission away” the heavy transuranic metals, the “nuclear waste” that the world’s fleet of 441+ light water reactors produce in spent fuel. This waste is about 4-5% of the volume of the fuel rods. It is composed of neptunium, plutonium, americium and curium. These transuranic elements are radiotoxic for very long periods of time. Thorenco’s technology fissions the plutonium and irradiates the transuranics causing the heavy metal elements to fission or to become lighter elements with much shorter decay periods. The thorium fuel cycle provides the neutrons as does the reactor grade plutonium. Nuclear power becomes more sustainable because the volume of the spent fuel from the uranium plutonium cycle is reduced by up to 95%. More importantly, the storage time for the residue from the recycled thorium fuel is materially reduced. This will have to be stored for less than 1% of the time needed for the storage of the untreated transuranics.

5. Produces Plutonium-238 needed for space exploration. WASHINGTON — The U.S. Senate gave final passage to an energy and water spending bill Oct. 15  2009 that denies President Barack Obama’s request for $30 million for the Department of Energy to restart production of plutonium-238 (pu-238) for NASA deep space missions. The House of Representatives originally approved $10 million of Obama’s pu-238 request for next year, but ultimately adopted the Senate’s position before voting Oct. 1 to approve the conference report on the 2010 Energy-Water Appropriations bill (H.R. 3183). The bill now heads to Obama, who is expected to sign it. NASA relies on pu-238 to power long-lasting spacecraft batteries that transform heat into electricity. With foreign and domestic supplies dwindling, NASA officials are worried the shortage will prevent the agency from sending spacecraft to the outer planets and other destinations where sunlight is scarce. Thorium reactors produce PU-238 as a “free” byproduct.

6. Does not produce Plutonium239 and higher used in nuclear bombs. The higher Plutonium isotopes are about as nasty as they get, and need expensive protection against terror attacks, and need to be stored for a very long time.

7. Produces isotopes that helps cure certain cancers. For decades, medical researchers have sought treatments for cancer. Now, Alpha Particle Immunotherapy offers a promising treatment for many forms of cancer, and perhaps a cure. Unfortunately, the most promising alpha-emitting medical isotopes, actinium-225 and its daughter, bismuth-213, are not available in sufficient quantity to support current research, much less therapeutic use. In fact, there are only three sources in the world that largely “milk” these isotopes from less than 2 grams of thorium source material. Additional supplies were not forthcoming. Fortunately, scientists and engineers at Idaho National Laboratory identified 40-year-old reactor fuel stored at the lab as a substantial untapped resource and developed Medical Actinium for Therapeutic Treatment, or MATT, which consists of two innovative processes (MATT-CAR and MATT-BAR) to recover this valuable medical isotope.

8. Earthquake safe. Thorium reactors have a very simple and compact design where gravity is the only thing needed to stop the nuclear reaction. Conventional Nuclear reactors depend on external power to shut down after a SCRAM, where poison rods fall down to halt the reaction.  The next figure shows the concept of a Thorium reactor.

The idea is to empty the fissile U-233 core through gravity alone. Since the fuel is already molten, it can run out like pig-iron into cooling heat exchangers with  water supplied thru gravity alone.

As we can see the reactor hardened structure is compact, and can be completely earthquake and tsunami proof. What can be sheared off are the steam pipes and external power, but the shutdown can complete without additional power.

9. No risk for a meltdown, the fuel is already molten. The fuel in a Thorium reactor is U-233 in the form of UraniumFluoride (UF4) salt that also contains Lithium and Beryllium, in its molten form it has a very low vapor pressure. The salt flows easily through the heat exchangers and the separators. The salt is very toxic, but it is completely sealed.

10. Very high negative temperature coefficient leading to a safe control. This is another beauty of the molten salt design. The temperature coefficient is highly negative, leading to a safe design with simple and consistent feedback. What does that mean?  It means that if temperature in the core rises, the efficiency of the reaction goes down, leading to less heat generated. There is no risk for a thermal runaway. In contrast, Chernobyl used graphite moderated Uranium , and it suffered a thermal runaway as the operators bypassed three safety circuits trying to capture the last remaining power during a normal shut-down. The reactor splat, the graphite caught fire and the rest is history. Five days later two nuclear installations in Sweden shut down their reactors due to excessive radiation, but it took a while before they could figure out what had happened. First then did the Soviets confess there had been an accident.

11. Atmospheric pressure operating conditions, no risk for explosions. Materials subjected to high radiation tend to get brittle or soften up. Thorium reactors operate under atmospheric conditions so the choice of materials that can withstand both high temperatures and high radiation is much greater, leading to a superior and less expensive design.  There is no high pressure gas buildup and the separation stage can be greatly simplified.

Many of the pictures are from a slide presentation given by David Archibald in Melbourne Feb 5 2011. He posted it “for the benefit of all” which I have interpreted as waving the copyright of the pictures

http://wattsupwiththat.com/2011/02/12/david-archibald-on-climate-and-energy-security/

Next installment:  Eleven more reasons for Thorium https://lenbilen.com/2012/02/15/eleven-more-reasons-to-switch-to-thorium-as-nuclear-fuel/

Energy from Thorium. Save 500 Million from the Budget now!

Here is an idea on how to save money that comes from the Thorium community on how to save more than 500 million dollars in the federal budget and energy, scientific and medical benefits as a bonus.(1)

The situation:  The Department of Energy has 1400 Kg Uranium-233 stored at Oak Ridge National Lab. They are in process of downgrading it to natural uranium by downblending it with depleted uranium. They need 200 tons of depleted uranium to do the task, rendering it unusable for anything.

The decommissioning was approved in 2003 and to date 130 million has been spent, but the actual downblending hasn’t even started yet.

Proposal 1. Sell it to India which has an active Thorium nuclear reactor program. There it can be used as a fuel producing an estimated 600 million dollars worth of electricity. India is building full scale Thorium reactors. India would be an ideal partner for cooperation in future of nuclear power generation.

Proposal 2. Stop the decommissioning immediately. Build our own Thorium Nuclear Reactor and over time get 600 million dollars worth of electric power and 45g of Plutonium-238. We are out of Pu-238 and can do no more planetary exploration satellites (3).

All  deep space satellites all had Pu-238 power sources. Only Russia has Pu-238 left, and the U.S. is banking on getting it for a friendship price. In addition there are significant unique medical applications in treatment of cancer that can be obtained by radiation from byproduct of the Thorium process. Below are pictures of the Thorium process and what a Thorium Power plant might look like. (4)

 

 

 

(1) http://energyfromthorium.com/

(2) http://conclave.intoday.in/conclave/conclave2011.php

(3) http://www.satnews.com/cgi-bin/story.cgi?number=598732652

(4) http://wattsupwiththat.files.wordpress.com/2011/02/archibald-ncc-5th-february-2010.pdf