Climate change: IPCC report is ‘code red for humanity’. Not so. The Antarctic ice sheet is the largest in many years, and the Arctic ice sheet and Greenland ice are doing quite well, thank you. A Limerick.

Antarctic’s and Greenland’s ice grow

the cool-down is starting to show

The new climate change fear

is that cooling is near

but you’d be the last one to know.

The cooling down in the Antarctic has led to the largest ice sheet in many years for this day. Check the chart: In only four years out of the last 43 has there been more ice.

So, how are the northern polar region shaping up?

The ice in the Arctic will stay

In Greenland it snowed every day

New white snow, what a sight!

Reflects back all the light

No climate change here, this i say.

Back in 2012 the Greenland ice sheet had an unprecedented melt, and the prediction was that all the Arctic ice would be melted in September of 2015, having reached the Climate tipping point from which there is no return to a normal climate unless we reorganized the whole planet into a new totalitarian global governance society.

Well, the tipping point didn’t happen, so hopefully global governance will not happen either, even though many are trying.

These are the latest charts for arctic temperatures, ice and snow for August 26:

This image has an empty alt attribute; its file name is meant_2021sat.png

While still below average, it is the most ice for this day in the last ten years.

The ice-pack on Greenland has been melting much less than normal during the melting season

And yesterday’s snowfall over Greenland

Remember, H2O is a condensing gas, when cooled off it condenses into clouds. Clouds sometimes gives rain, and without rain life on land will cease to exist. In the Arctic, instead of rain it snows all times of the year, especially in Greenland. It rains for a month on the coast, but over 2000 feet it is all snow all the time when there is precipitation.

Clouds cool by day and warm by night, a one percent difference in cloud cover means more than the increase in CO2.

The only place where cloud cooling doesn’t work is in deserts. There is an Arab proverb: “All sunshine makes a desert.” The climate change danger is not more CO2, but making more deserts. The American South-west is in danger of being “desertified” unless we restore the fragile water balance in the region. To solve the problem I am proposing a Transcontinental Aqueduct, from the Mississippi river to the Colorado river, using a lot of power, but also producing a lot of peak power and hydro-power storage facilities on the way, and i so doing tripling tht hydro-power ccapacity of the whole nation.

August 28, read through the Holy Bible in a year.

2 Corinthians 11. The Apostle Paul showed concern for the Corinthians faithfulness, warned them against false Apostles, “for Satan himself is transformed into an angel of light.” Paul put forward a reluctant boasting about his sufferings for Christ.

Isaiah 24 describes the LORD’s devastation of the earth. (Climate change anyone?)

Isaiah 25. After the dire prophecies of Chapter 24 the prophet Isaiah recorded this song of praise. Read verse 8 carefully and let it sink in!

The ultimate infrastructure project: A Transcontinental aqueduct to save the American Southwest from becoming a desert.

The American Southwest has always been subject to drought cycles, some worse than the one that is now devastating the area. Below is a very interesting presentation from ASU about a previous civilization in the Phoenix area, thriving and then gone.

Arizona State University presentation

Will it happen again?

The problem:

  1. Lake Mead will be emptied in less than 10 years with the current usage pattern. Then what?
  2. The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.
  3. the aquifers in Arizona, especially in the Phoenix and Tucson area, and to some extent New Mexico and the dry part of Texas are being drawn down and are at risk of being exhausted.
  4. The Salton Sea in the Imperial Valley of California is maybe the most polluted lake in all of U.S.A. It is even dangerous to breathe the air around it sometimes. The area contains maybe the largest Lithium deposit in the world.
  5. The Colorado River water is too salty for good irrigation .
  6. The Colorado river no longer reaches the Gulf of California. Fishing and shrimp harvesting around the Colorado River Delta is no more.
  7. 40 million people depend on the Colorado River for drinking water. The population is still rising rapidly in the West. Will they have water in the future?
  8. Except for California there is not much pumped Hydro-power storage in the American Southwest.
  9. Texas has plenty of wind power, but no pumped hydro-power storage. This makes it difficult to provide peak power when the sun doesn’t shine and the wind doesn’t blow. Nuclear power is of no help, it provides base power only. Peak power has to come from coal and natural gas plants.
  10. New Mexico has some ideal spots for solar panels, but no water is available for pumped storage.
  11. Arizona has a surging population, wind and solar power locations are abundant, but no pumped hydro-power storage.

The solution:

Build a transcontinental aqueduct from the Mississippi River to the Colorado River capable of transporting 15 million acre-ft of water yearly through Louisiana, Texas, New Mexico and Arizona. It will be built similar to the Central Arizona Project aqueduct, supplying water from the Colorado river to the Phoenix and Tucson area, but this aqueduct will be carrying seven times more water over five times the distance and raise the water more than twice as high before returning to near sea level. The original Central Arizona Project cost $4.7 billion in 1980’s money, the Transcontinental Aqueduct will cost around $340 Billion in 2021 money applying simple scaling up principles.

The Mississippi River has a bad reputation for having polluted water, but since the clean water act the water quality has improved drastically. Fecal coli-form bacteria is down by a factor of more than 100, the water is now used all the way down to New Orleans for drinking water after treatment. The lead levels are down by a factor of 1000 or more since 1979. Plastic pollution and pharmaceutical pollution is still a problem, as is the case with most rivers. The Ph is back to around 8 and salt content is negligible. Mississippi water is good for irrigation, and usable for drinking water after treatment.

But the aqueduct will do more than provide sweet Mississippi water to the thirsty South-west, it will make possible to provide peak power to Texas, New Mexico and Arizona. In fact, it is so big it will nearly triple the pumped Hydro-power storage for the nation, from 23 GW for 5 hours a day to up to 66 GW.

The extra pumped hydro-power storage will come from a number of dams built as part of the aqueduct or very adjacent to it. The water will be pumped from surplus wind and solar power generators when available. This will provide up to 20 GW of power for 5 hours a day. If not enough extra power has been generated during the 19 pumping hours, sometimes power will be purchased from the regular grid. The other source of pumped hydro-power storage is virtual. There will be more than 230 MW LFTR (Liquid Fluoride salt Thorium Rector) power stations strategically stationed along the waterway providing pumping of water for 19 hours and providing virtual hydro-power output.

These 43 GW of hydro-power capacity will be as follows: Louisiana, 0.4 GW; Texas, 18,5 GW (right now, Texas has no hydro-power storage, but plenty of wind power); New Mexico, 10.5 GW; Arizona 13.6 GW. In Addition, when the Transcontinental Aqueduct is fully built out, the Hoover dam can provide a true 2.2 GW hydro-power storage by pumping water back from Lake Mojave; a 3 billion dollar existing proposal is waiting to be realized once Lake Mead is saved.

The amount of installed hydroelectric power storage is:

U.S. operating hydroelectric pumped storage capacity

Most hydroelectric pumped storage was installed in the 70’s. Now natural gas plants provide most of the peak power. This aqueduct will double, triple the U.S. pumped peak storage if virtual peak storage is included. By being pumped from surplus wind and solar energy as well as nuclear energy it is true “Green power”. Some people like that.

What follows is a description of each leg of the aqueduct. Each leg except legs 9 and 10 ends in a dam, which holds enough water to make each leg free to operate to best use of available electricity and provide peak power on demand.

Leg 1: Atchafalaya river (Mississippi river bypass) to Aquilla lake, a distance of 360 miles.

Leg 2: Aquilla lake to Brad reservoir (to be built), a distance of 100 miles.

Leg 3: Brad reservoir to North of Baird dams. (to be constructed), a distance of 60 miles

Leg 4: North of Baird dams (to be constructed) to East of Sweetwater dam (to be built), a distance of 60 miles.

Leg 5: East of Sweetwater dam (to be constructed) to Grassland Canyon Lake (to be made), a distance of 50 miles.

Leg 6: Grassland Canyon Lake (to be made) to White Oaks Canyon Lake (to be made), a distance of 110 miles.

Leg 7: White Oaks Canyon Lake (to be made) to the Arch Lewis Canyon Lake via a 20 mile tunnel under the Guadaloupe Mountains in New Mexico.

Leg 8: Arch Lewis Canyon Lake to Martin Tank Lake, a distance of 50 miles.

Leg 9: Martin Tank Lake to Poppy Canyon Reservoir, a distance of 210 miles.

Leg 10: The Poppy Canyon Upper and Lower Reservoir. A Hydro-power storage peak power plant.

Leg 10, alternate solution: Poppy Canyon Reservoir to Cove Tank Reservoir, a distance of 13 miles.

Leg 11: Poppy Canyon Reservoir to San Carlos Lake, a distance of 80 miles.

Leg 12: San Carlos Lake to the Colorado river following the Gila river, a distance of 280 miles.

Climate change: IPCC report is ‘code red for humanity’. Not so fast. The Arctic ice sheet and Greenland ice is doing quite well, thank you. A Limerick.

The ice in the Arctic will stay

In Greenland it snowed every day

New white snow, what a sight!

Reflects back all the light

No climate change here, this i say.

Back in 2012 the Greenland ice sheet had an unprecedented melt, and the prediction was that all the Arctic ice would be melted in September of 2015, having reached the Climate tipping point from which there is no return to a normal climate unless we reorganized society into a more totalitarian global governance.

Well, the tipping point didn’t happen, so hopefully global governance will not happen either, even though many are trying.

These are the latest charts for arctic temperatures, ice and snow for August 15:

The ice-pack on Greenland has been melting much less than normal during the melting season

And yesterday’s snowfall over Greenland

Remember, H2O is a condensing gas, when cooled off it condenses into clouds.

Clouds cool by day and warm by night, a one percent difference in cloud cover means more than the increase in CO2.

The only place this doesn’t work is in deserts, if no clouds form Forget CO2, but let us not make any more deserts. The American South-west is in danger of being “desertified” unless we restore the fragile water balance in the region.

The Transcontinental Aqueduct. Leg 1: Atchafalaya river (Mississippi river bypass) to Aquilla lake, a distance of 360 miles.

The Transcontinental aqueduct at the starting point will have a carrying .capacity of 15 million acre-ft per year, or 21,000 cubic feet per second on average. Maximum flow will be 26,500 cfs, allowing the power generators to supply peak power to the grid for up to 5 hours per day instead of pumping water.

The starting point of the aqueduct is where the Red river empties out in the Atchafalaya river, and has a Mississippi River diversion canal. The elevation at the starting point is 7 feet, and the dam and 32 desilting basins of size 300 x 600 feet with a depth of 20 feet will be located in the upper part of the never used West Atchafalaya Floodway. From there the water will be collected and the aqueduct will start going westward.

The Mississippi River flood control Morganza spillway is south of the Atchafalaya river diversion, and will not interfere. The place chosen is ideal to relieve some of the Mississippi river flow. Even in the lowest Mississippi flow in a drought year this diversion has sufficient flow to divert 26,500 cfs from the river.

The first leg of the aqueduct is 360 miles long and is an open water river with pumping stations whenever the river has to rise at least 30 feet. The river runs by gravity until it has sunk about 15 feet which is about 6.2 miles downstream. Since endpoint is at 548 feet elevation this requires lifting the water about 1300 feet. During the course of the path the aqueduct crosses the Sabine River south of the Toledo Bend Reservoir, going through Richland-Chambers reservoir and Navarro Mills lake; following the best climb it crosses the Neches River and the Trinity River following the geologically best way until it reaches Aquilla Lake. The aqueduct is quite substantial, it will carry about 80% more water than the All American Canal, seen below under construction. This canal has a drop of about 2.2 feet per mile to accommodate maximum flow.

Pumping 26,500 cfs water through the aqueduct requires 3 Gigawatts of power when rounding up for turbine losses. This can be accomplished by thirty 100 MW LFTR reactors, also being able to provide up to 3 GW of peak power for 5 hours/day on demand.

The end point for stage 1 of the channel is Aquilla lake, elevation 548 feet. It has a storage capacity of 100,000 acre-ft, about a day’s worth of storage.

The Arctic ice sheet and Greenland ice is doing quite well, thank you. A Limerick.

The ice in the Arctic will stay

In Greenland it snowed every day

New white snow, what a sight!

Reflects back all the light

No tipping point here, this i say.

Back in 2012 the Greenland ice sheet had an unprecedented melt, and the prediction was that all the Arctic ice would be melted in September of 2015, having reached the Climate tipping point from which there is no return to a normal climate unless we reorganized society into a more totalitarian global governance.

Well, the tipping point didn’t happen, so hopefully global governance will not happen either’ even many are trying.

These are the latest charts for arctic temperatures, ice and snow for Jan 11:

Notice the temperature has been below normal for the first half of the melting season.

The icepack on Greenland has barely started melting during the melting season

Notice the difference between this year and 2012

And yesterday’s snowfall over Greenland

Notice, Greenland only melts at the edges, the ice pack is always frozen

Remember, H2O is a condensing gas, when cooled off it condenses into clouds.

Clouds cool by day and warm by night, a one percent difference in cloud cover means more than the increase in CO2.

The only place this doesn’t work is in deserts. Forget CO2, but let us not make any more deserts.

Time to rethink ethanol mandates for gasoline.

I just checked the price of corn. On May 7, the May 21, 2021 contract closed at $ 7.72 a bushel. A year ago, the price was a little over three dollars per bushel.
One bushel of corn makes 2.5 gallon of ethanol
That makes the feedstock price to make ethanol $3.08 a gallon. Add to that 50 cents to make the stuff and distribute it and the price per gallon is $ 3.58.
Since the heat content of ethanol is 67% of regular gasoline (no ethanol), the gasoline equivalent price of ethanol is $ 5.34 per gallon.
Over five bucks a gallon for ethanol! And that is before profit, blending, selling and taxes!
That’s the good news.
For the people that are worried about CO2 the bad news is:
To make corn you have to use 150 pounds of nitrogen fertilizer per acre. It takes the equivalent of 0.15 gallons of gasoline to produce one pound of nitrogen fertilizer. That comes to the equivalent of 22.5 gallons of gasoline to fertilize one acre. One acre of corn yields about 150 bushels of corn.
The fuel spent to produce one bushel of corn is therefore more than 0.15 gallons of gasoline. Since it also involves sowing, preparing the soil, cultivating, pesticides, phosphate fertilizer and harvesting it takes 0.25 gallons of fuel to produce one bushel of corn.
Here comes the kicker: When you ferment sugar into alcohol half the weight disappears as CO2! Let us examine the formula: C6H12O6 + Zymase → 2C2H5OH + 2CO2
The molecule weight of C2H5OH is 46 and the molecule weight of CO2 is 44.
Well almost half anyway.
Let us assume you have a car that gets 25 miles to the gallon and you drive 100 mile on pure gasoline. You have used 4 gallons of gasoline.
Now take the same car and drive 100 miles with a 10% ethanol mix, mandated by the EPA. Remember, they are concerned about CO2.
The ethanol has only 67% of the heat content of gasoline so the gas mileage will be lower. It will be consuming 0.04 x 0.9 +0.1 x 1.5 x 0.04 = 0.042 gallons per mile, 5% more or a total of 4.2 gallons for the 100 mile trip.
So you consumed 3.78 gallons of gasoline and 0.42 gallons of ethanol, for a total of 4.2 gallons. We have all experienced this increase in gas consumption. And this is best case.
What about CO2 up in the air? In the pure gasoline case we produced 4 gallons worth of CO2.
In the ethanol mix case we produced 4.2 gallons worth of CO2.
Add to that another .4 gallons equivalence of CO2 from the fermentation, and another .04 gallons worth of CO2 to produce the corn in the first place.
The sum total is 4.64 gallons worth of CO2, or about 16% more than in the gasoline only case.
But corn does absorb CO2 when it grows! Doesn’t that count?
Corn is one of the worst crops for soil erosion and uses up other nourishments that will not be used if you make ethanol from it. Granted the cattle are happy for the cakes that are left when the sugar and oil is removed.
In this age of looming food shortages nearly any other use of available tillable soil is to be preferred over ethanol production.
Oh, and one more thing. Assume that pure gasoline is 3 dollars a gallon at the pump, which includes 50 cents in taxes.
Unsubsidized ethanol blend should be $5.34 a gallon, before taxes
But we subsidize the ethanol production so the price is still 3 dollars a gallon at the pump.
If we used pure gasoline the hundred mile trip would cost twelve dollars.
If we paid full price for the ethanol blend we would pay $ 13.79 for the trip and produce 16% more CO2.
We are really paying $ 13.79 for the trip, produce 16% more CO2 and leave a bill of $1.79 for our grandchildren to pay, the subsidy of 0.42 gallons of ethanol.
This is EPA legislation at work, trying to combat the coming “climate catastrophe.”

There is a better way. remove ethanol subsidy guarantees and let the corn be used to produce more chicken and pork, and use some of the acreage to produce grain for a hungry world. This will help to prevent food prices inflation.

Earth day 2021. A Limerick.

It’s time for the annual Earth Day

to celebrate Lenin’s old birthday.

Population control

is their ultimate goal;

Choose life, not this bad Marxist way!

The theme for this earth day is still, sustainability, we must reduce the world population to about 700 million from present 7,6 billion, or the planet will be uninhabitable in 9 years.

Sherlock Holmes: “It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories instead of theories to suit facts”. From: “Scandal in Bohemia” A. Conan Doyle.

The first Earth Day in Philadelphia 1970, April 22 (the 100 year anniversary of Lenin’s Birth) featured Ira Einhorn (The Unicorn Killer) as master of Ceremonies. The big environmental scare of the day was the threat of a new Ice Age. The clarion call was: “In the year 2000 temperatures will have fallen 10 degrees”, the culprit was air pollution, especially acid rain. The acid rain was so bad in the Adirondacks, Canada, Norway and Sweden that the Rainbow Trout died in droves, and even the oceans were in danger of getting too acid. The stench from dead fish washing up the shores of lake Ontario was overwhelming. Regulations were enacted to add scrubbers to power stations, waste water was purified, and – wouldn’t you know it, the cooling trend reversed itself and was followed by warming. Since the cooling trend was “obviously man-made” they had to find a reason for the sudden warming. Never mind that around the year 1200 there was at least one farm on South West Greenland that exported, among other things, cheese. How do we know that? They have excavated the ruins of a farm, “Gården under Sanden”, buried under permafrost for six centuries.  During these six centuries the Northern Hemisphere experienced what is called “the little ice age” a time when the winters could be so cold that in 1658 the Swedish army, cavalry and artillery crossed the Great Belts in the southern Baltic over ice and sacked Copenhagen.

Picture left: Gården under sanden excavation.

Picture belowt: The crossing of the Great Belt 1658.

To predict future climate changes many computer models have been developed dealing with how the earth responds to changes in atmospheric conditions, especially how it responds to changes in CO2 levels.  Most were developed in the 1970 to 2000 time frame, a time of rapid temperature rise and as such they were all given a large factor for the influence of rising CO2. Since 2005 we have had a cooling trend, so the models cooperate less and less and are given more and more unreliable predictions. It is no wonder then that they all have failed to model the past. None of them have reproduced the medieval warm period or the little ice age. If they cannot agree with the past there is no reason to believe they have any ability to predict the future. The models are particularly bad when it comes to predict cloud cover and what time of day clouds appear and disappear. Below is a chart of a number of climate models and their prediction of cloud cover versus observed data. Note especially to the right where most models completely fail to notice the clear skies over Antarctica.

Is there a better way to predict future temperature trends? When you go to the doctor for a physical, at some point and without warning he hits you under the knee with a hammer and watches your reaction. He is observing your impulse response. Can we observe impulse responses for the earth? We can do even better. In the 51 years since the first Earth Day we have collected satellite data, not only temperature, but also cloud data, and the result differs quite a lot from the predicted model results.

Old Lenin stands tall in Seattle. It was the only statue safe in Seattle during the riots of 2020.

Quote from Alexandria Occasio-Cortez in January 2019: “Millennials and Gen Z and all these folks that come after us are looking up, and we’re like, ‘The world is going to end in 12 years if we don’t address climate change, and your biggest issue is how are we gonna pay for it?’ ” she said.

I beg to differ.

We live in only one world. As a concerned citizen I realize we have immense environmental challenges before us, with water pollution; from plastics in the ocean, excess fertilizer in the rivers, poison from all kinds of chemicals, including antibiotics, birth control and other medicines flushed down the toilet after going through our bodies, animals that are fed antibiotics, pest control, weed control and so on. Increasing CO2 is not one of the problems, it will in fact help with erosion control, and allow us to feed more people on less agricultural land with proper management, and require less fertilizer and water to do so. In fact, proper water management is a larger problem, with some rivers no longer even reaching the ocean. All water is already spoken for, especially in much of the 10 to 40 degrees latitude, where most people live.

In the atmosphere the two most important greenhouse gases are water vapor and CO2 with methane a distant third. Water vapor is much more of a greenhouse gas everywhere except near the tropopause, high above the high clouds and over the polar regions, when the temperature is below 0 F, way below freezing. If the temperature is above freezing, CO2 is of almost no importance. A chart shows the relationship between CO2 and water vapor:

Image result for h20 and co2 as greenhouse gases

Source: http://notrickszone.com/2017/07/31/new-paper-co2-has-negligible-influence-on-earths-temperature/

Even in Barrow, Alaska water vapor is the dominant greenhouse gas. Only at the South Pole (And North Pole) does CO2 dominate (but only in the winter).

All Climate models take this into account, and that is why they all predict that the major temperature increase will occur in the polar regions with melting icecaps and other dire consequences. But they also predict a uniform temperature rise from the increased forcing from CO2 and the additional water vapor resulting from the increased temperature.

This is wrong on two accounts. First, CO2 and H2O gas are nor orthogonal, that means they both absorb in the same frequency bands. There are three bands where CO2 absorbs more than H2O in the far infrared band, but other than that H2O is the main absorber. If H2O is 80 times as common as CO2 as it is around the equator, water vapor is still the dominant absorber, and the amount of CO2 is irrelevant.

Secondly gases cannot absorb more than 100% of the energy available in any given energy wavelength! So if H2O did absorb 80% of the energy and CO2 absorbed 50%, the sum is not 130%, only 90%. (0.8 + 0.5×0,2 or 0.5 + 0.8×0.5). In this example CO2 only adds one quarter of what the models predict.

How do I know this is true? Lucky for us we can measure what increasing CO2 in the atmosphere has already accomplished. For a model to have credibility it must be tested with measurements, and pass the test. There is important evidence suggesting the basic story is wrong. All greenhouse gases work by affecting the lapse rate in the tropics. They thus create a “hot spot” in the tropical troposphere. The theorized “hot spot” is shown in the early IPCC publications. (Fig A)

Fig. B shows observations. The hotspot is not there. If the hotspot is not there, the models must be wrong. So what is wrong with the models? This was reported in 2008 and the models still assume the additive nature of greenhouse gases, even to the point when more than 100% of the energy in a given band is absorbed.

How about Methane? Do not worry, it absorbs nearly exclusively in the same bands as water vapor and has no measurable influence on the climate.

But it will get warmer at the poles. That will cause melting of the ice-caps? Not so fast. When temperature rises the atmosphere can hold more water vapor, so it will snow more at higher latitudes. While winter temperatures will be higher with more snowfall, this will lower the summer temperatures until the extra snow has melted. And that is what is happening in the Arctics

As we can see from this picture, the winters were about 5 degrees warmer, but starting from late May through early August temperatures were lower. It takes time to melt all the extra snow that fell because of the less cold air, able to contain more water vapor.

These are my suggestions

  1. Do not worry about increasing CO2 levels. The major temperature stabilizer is clouds, and they will keep the earth from overheating by reflecting back into space a large amount of incoming solar radiation. Always did, and always will, even when the CO2 concentration was more than 10000 ppm, millions of years ago. Ice ages will still come, and this is the next major climate change, maybe 5000 years from now, probably less.
  2. Clean up rivers, lakes and oceans from pollution. This is a priority.
  3. Limit Wind turbine electric energy to areas not populated by large birds to save the birds. Already over 1.3 million birds a year are killed by wind turbines, including the bald and Golden Eagles that like to build their aeries on top of wind turbines.
  4. Do not build large solar concentration farms. They too kill birds.
  5. Solar panels are o.k. not in large farms, but distributed on roofs to provide backup power.
  6. Exploit geothermal energy in geologically stable areas.
  7. Where ever possible add peak power generation and storage capacity to existing hydroelectric power plants by pumping back water into the dams during excess capacity.
  8. Add peak power storage dams, even in wildlife preserves. The birds and animals don’t mind.
  9. Develop Thorium based Nuclear Power. Russia, China, Australia and India are ahead of us in this. Streamline permit processes. Prioritize research. This should be our priority, for when the next ice age starts we will need all the CO2 possible.
  10. Put fusion power as important for the future but do not rush it, let the research and development be scientifically determined. However, hybrid Fusion -Thorium power generation should be developed.
  11. When Thorium power is built up and has replaced coal and gas fired power plants, then is the time to switch to electric cars, not before.
  12. Standard Nuclear Power plants should be replaced by Thorium powered nuclear plants, since they have only 0,01% of the really bad long term nuclear waste.
  13. Start thinking about recovering CO2 directly from the air and produce aviation fuel. This should be done as Thorium power has replaced coal and gas fired power plants.
  14. This is but a start, but the future is not as bleak as all fearmongers state.

And here are the major advantages of developing Thorium Nuclear Power.

 1. A million year supply of Thorium available worldwide.

 2. Thorium already mined, ready to be extracted.

 3. Thorium based nuclear power produces 0.012 percent as much TRansUranium waste products as traditional nuclear power.

 4. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.

 5. Thorium nuclear power is only realistic solution to power space colonies.

 6. Radioactive waste from an Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick.

 7. Thorium based nuclear power is not suited for making nuclear bombs.

 8. Produces isotopes that helps treat and maybe cure certain cancers.

 9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.

10. Molten Salt Liquid Fluoride Thorium Reactors cannot have a meltdown, the fuel is already molten, and it is a continuous process. No need for refueling shutdowns.

11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

12. Atmospheric pressure operating conditions, no risk for explosions. Much safer and simpler design.

13. Virtually no spent fuel problem, very little on site storage or transport.

14. Liquid Fluoride Thorium Nuclear reactors scale beautifully from small portable generators to full size power plants.

15. No need for evacuation zones, Liquid Fuel Thorium Reactors can be placed near urban areas.

16. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

17. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

18. Russia has an active Thorium program.

19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

 20. China is having a massive Thorium program.

21. United States used to be the leader in Thorium usage. What happened?

22. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

23. With a Molten Salt Reactor, accidents like Chernobyl are impossible.

24. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

25. Will produce electrical energy at about 4 cents per kWh.

26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles.

27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed.

28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

29. President Donald J. Trump on Jan.12 issued an Executive Order on Promoting Small Modular Reactors for National Defense and Space Exploration. Only Liquid fluoride thorium reactors can meet all the need

No border crisis but a climate catastrophe is looming?

Climate change is now officially the new secular religion. House Speaker Nancy Pelosi (D-CA) said Sunday, March 14 on ABC’s “This Week” “My most recent trip to the northern triangle, that would be Honduras, Guatemala, El Salvador. You saw the impact of climate change. These people were leaving because of the drought. They couldn’t farm, and they were seeking other ways to survive. There are many reasons to go into this, but the fact we have to deal with it at the border, and some of the people coming there are seeking asylum.

The iconic Metronome digital clock sprawled across a 14th Street building in New York City facing Union Square normally counts time to and from midnight down to the fractions of a second, like a never-ending hour glass.

But in September 2020, the public installation was transformed into a “Climate Clock” that broadcasts the time remaining to avert an all-out climate catastrophe, or more specific, how much time we have left before the earth has warmed up 1.5 degree Celsius, the tipping point after which life as we know it would seize to exist.

Climate apocalypse alarmists also provide you with a climate clock to download which at the time of writing this blog looked like this:

The climate clock ticks down with remarkable precision, and the part of the total energy generated that is renewable is increased is displayed with ten digit precision.

So far, so good. But is it true? Let us take a look at the total ecosystem, including the clouds, rain and snow.

As CO2 warms up the poles

burned oil, gas and coal play their roles.

CO2 is still good;

makes plants green, grows more food,

and clouds are the climate controls.

We live in interesting times, the CO2 concentration has increased 50% since the beginning of industrialization. In the last 30 years the level has risen 17%, from about 350 ppm to nearly 410 ppm. This is what scares people. Is is time to panic and stop carbon emissions altogether as teenage Climate activist Greta Thunberg and N.Y. congresswoman Alexandria Ocasio-Cortez have suggested? As if on cue the climate models have been adjusted, and they suddenly show a much higher rate of temperature increase, in this case what is supposed to happen to global temperatures for a doubling of CO2 from pre-industrial times, from 270ppm to 540ppm.

There are two ways to approach this problem. The models make certain assumptions about the behavior of the changing atmosphere and model future temperature changes. This is the approach taken by IPCC for the last 32 years. These models are all failing miserably when compared to actual temperature changes.

The other way i to observe what is actually happening to our temperature over time as the CO2 increases. We have 50 years of excellent global temperature data, so with these we can see where, when and by how much the earth has warmed.

The most drastic temperature rise on earth has been in the Arctic above the 80th latitude. In the winter of 2018 it was 8C above the 50 year average. See charts from the Danish Meteorological Institute:

Note, there is no increase at all in the summer temperatures!

The fall temperature saw an increase of 4C and the spring temperature saw an increase of about 2.5C.

The 2020 winter recorded an about 4c increase Source: DMI.

meanT_2020

Notice: In this chart the there is no recorded summer temperature increase at all!

The 5 thru 8C winter rise of temperature is significant, most would even say alarming, and my response is, why is that?

To get the answer we must study molecular absorption spectroscopy and explain a couple of facts for the 97% of all scientists who have not studied molecular spectroscopy. IPCC and most scientists claim that the greenhouse effect is dependent on the gases that are in the atmosphere, and their combined effect is additive according to a logarithmic formula. This is true up to a certain point, but it is not possible to absorb more than 100% of all the energy available in a certain frequency band! For example: If water vapor absorbs 90% of all incoming energy in a certain band, and CO2 absorbs another 50% of the energy in the same band, the result is that 95% is absorbed, (90% + 50% * (100% – 90%)),  not 140%, (90% + 50%).

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency range s they absorb.

For this we will have to look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

The red area represents the observed amount of solar radiation that reaches the earth’s surface, the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is re-emitted. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us  now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 microns. Of them the 2.7 and 4.3 micron bands absorb where there is little black body radiation, the only band that is of interest is at 15 microns, and that is in a band where the black body radiation has its maximum. However it is also in a band where water vapor also absorb, not as much as CO2,only about 20% to 70% as much. Water vapor or absolute humidity is highly dependent on the temperature of the air, so at 30C there may be 50 times as much water vapor, at 0C there may be ten times as much water vapor, and at -25C there may be more CO2 than water vapor. At those low temperatures the gases are mostly additive. In the tropics with fifty times more water vapor than CO2, increased CO2 has no influence on the temperature whatsoever. Temperature charts confirm this assertion:

Here the temperature in the tropics displays no trend whatsoever. It follows the temperature of the oceans, goes up in an El Niño and down in a La Niña. The temperature in the southern hemisphere shows no trend. In the northern temperate region there is a slight increase, but the great increase is occurring in the Arctic. There is no increase in the Antarctic yet even though the increase in CO2 is greater in the Antarctic and the winter temperature in the Antarctic is even lower than in the Arctic. So CO2 increase cannot be the sole answer to the winter temperature increase in the Arctic.

There is an obvious answer. When temperatures increase the air can contain more moisture and will transport more moisture from the tropics all the way to the arctic, where it falls as snow. Is the snow increasing in the Arctic?

Let us see what the snow statistics show. These are from the Rutgers’ snow lab.

nhland_season4

The fall snow extent is increasing, and has increased by more than 2 percent per year.

The winter snowfall has also increased but only by 0.04 percent per year. The snow covers all of Russia, Northern China, Mongolia, Tibet, Kashmir and northern Pakistan, Northern Afghanistan, Northern Iran, Turkey, Part of Eastern Europe, Scandinavia, Canada, Alaska, Greenland and part of Western and Northern United States.

In the spring on the other hand the snow pack is melting faster, about 1.6 percent less snow per year. One of the major reasons for an earlier snow-melt is that the air is getting dirtier, especially over China, and to some extent Russia. The soot from burning coal and mining and manufacturing changes the albedo of the snow. The soot is visible on old snow all the way up to the North Pole. The other reason is that the poles are getting warmer. In the fall and winter it is mostly due to increased snowfall, but in the spring, as soon as the temperature rises over the freezing point, melting occurs.

So the warming of the poles, far from being an impending end of mankind as we know it, may even be beneficial. Warmer poles in the winter means less temperature gradient between the poles and the tropics, leading to less severe storms. They will still be there, but less severe.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, accomplished with only the fertilizing effect of CO2, the earth can now keep another 2 billion people from starvation, not to mention what it does to plants and wildlife. The people in El Salvador are, even with the drought, better off now with the air containing more CO2 than before. One extra benefit is that photosynthesis uses less water as CO2 increases.

Having said that, I am still a conservationist. Coal, oil and gas will run out at some time, and I for one would like to save some for my great grandchildren. In addition I would like to minimize the need for mining, which is quite destructive. As the great conservationist Sarah Palin so succinctly put it: “For when it’s gone, it’s gone.

The best solution is to switch most electricity generation to Thorium molten salt nuclear power. There are multiple reasons why this should be done as a priority.

Here are some of them:

 1. A million year supply of Thorium available worldwide.

 2. Thorium already mined, ready to be extracted.

 3. Thorium based nuclear power produces 0.012 percent as much TRansUranium waste products as traditional nuclear power.

 4. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.

 5. Thorium nuclear power is only realistic solution to power space colonies.

 6. Radioactive waste from an Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick.

 7. Thorium based nuclear power is not suited for making nuclear bombs.

 8. Produces isotopes that helps treat and maybe cure certain cancers.

 9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.

10. Molten Salt Liquid Fluoride Thorium Reactors cannot have a meltdown, the fuel is already molten, and it is a continuous process. No need for refueling shutdowns.

11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

12. Atmospheric pressure operating conditions, no risk for explosions. Much safer and simpler design.

13. Virtually no spent fuel problem, very little on site storage or transport.

14. Liquid Fluoride Thorium Nuclear reactors scale beautifully from small portable generators to full size power plants.

15. No need for evacuation zones, Liquid Fuel Thorium Reactors can be placed near urban areas.

16. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

17. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

18. Russia has an active Thorium program.

19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

 20. China is having a massive Thorium program.

21. United States used to be the leader in Thorium usage. What happened?

22. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

23. With a Molten Salt Reactor, accidents like Chernobyl are impossible.

24. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

25. Will produce electrical energy at about 4 cents per kWh.

26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles.

27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed.

28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

29. President Donald J. Trump on Jan.12 issued an Executive Order on Promoting Small Modular Reactors for National Defense and Space Exploration. Only Liquid fluoride thorium reactors can meet all the needs.

Weather and climate forecasting, a difficult science to master.

An old British saying used to be: “Everybody complains about the weather, but nobody does anything about it.” We may not be able to do much about the weather, but at least we can try to save the world from the “Climate Crisis”. The term used to be Climate Change, but with the new administration the term has been upgraded.

When I grew up a long time ago in Sweden the old folks used to say “If you make it through February, you will make it another year.” This was of course before electricity and central heating”.

There is a saying in Norway: “There is no bad weather, only bad clothes.” Here is an example, the souwester” It works well in freezing rain.

The long term weather forecast for February, issued January 21 by the weather channel looked like this:

Great, no need to buy that extra sweater, and Texans can go another season with thin t-shirts and designer pre-torn jeans.

But the weather forecast three weeks later looked like this:

But the windmills don’t work in freezing rain, so the electric grid was challenged when over half of the windmills froze just as the demand spiked. Normally coal and natural gas electrical plants would have kicked in, but many of the coal plants had been shut down due to environmental regulations, and the emergency request to restart them were denied due to environmental concerns. The natural gas plants ran full bore until the natural gas pressure in the pipelines started dropping below safe levels. This lead to rotating power-outs to preserve gas line pressure. But in the wisdom of the authorities the gas line pressure compressors had been switched from natural gas to electricity (environmental concerns), so if the compressors were in an area of electric blackout, there went the gas pressure, causing a chain reaction, and the whole power grid came within hours of a total collapse. Only nuclear power hummed along as if nothing had happened, but nuclear power is a base load and cannot increase the power above a certain level. Back in 2017, Secretary of Energy Rick Perry proposed paying Coal and Nuclear Power Stations to keep at least 90 days worth of coal  onsite, for disaster resilience. At the time the resilience proposal was widely criticized as being a thinly disguised Trump scheme to pump government money into the coal and nuclear industries. So the plan was rejected by the bureaucracy. But in hindsight, a bit more resilience might have saved Texas from days of painful electricity blackouts, and even deaths.

The bill for these monumental miscalculations is yet to be paid. The cost of electricity for these 2 weeks off horror is yet to be paid. The Texans who were fortunate enough to have power have to pay the bill for intermittent electricity at a cost of two dollars per kilowatt-hour. A retired veteran on social security got a bill for over 16,000 dollars for part of February.

Since weather is so hard to predict, do we have any hope of being able to predict future climate? People keep trying. And they keep developing climate models. Here is a chart of most of them:

Not much has changed since this chart was first published. While the IPCC confidence in their climate models keep increasing, so does the difference between model prediction and actual temperature.

Climate finance continues to be the central issue in how the global community proposes to follow through with implementation of the Paris Agreement, which Joe Biden has decided to rejoin by executive fiat. This is in the opinion of his advisors, such as John Kerry appropriate in the context of the last IPCC report showing a USD 1.6-3.8 trillion energy system investment requirement to keep warming within a 1.5 degree Celsius scenario to avoid the most harmful effects of climate change (IPCC, 2018).

Does this still make sense?

Anyone?