Penn State University Engineering Capstone Showcase 2018.

Thursday, two days before finals was the PSU Engineering Capstone showcase. Even though I have been a lecturer there for the last six years I didn’t realize it is by far the largest Capstone showcase of this type in the world, and it is growing year by year. This year there were over 200 teams competing, mostly graduating seniors, but a good number of freshmen in engineering, and not a few graduate projects, in all over 1000 participants.

The set-up began at 10:30 a. m. in the Bryce Jordan main Arena, with 139 senior Capstone projects displaying their projects.

The overflow training area had over 70 projects from Civil Engineering and Earth Science, Nuclear Engineering, as well as graduate projects and the displays from the freshman Engineering Design course.

The success of the showcase is in part because of a large number of corporate sponsors, many who sponsor multiple projects. Some of these projects are the very cutting edge of  science, and provide a real challenge for the students.

My role as an instructor is quite simple: To convert the engineering students from students to world class engineers in 17 short weeks. The engineering students are organized in teams of 4 or 5 persons. Most of the teams consist of engineers from more than 2 disciplines. So the teams must get to know each other, work together as a functioning team, do the research, build a prototype or a final product as a team, with deadlines to meet. This is quite different from cramming for an exam.

The projects are quite different:

Here is a project to build a prototype fit-bit that monitors the total activity and inactivity of a subject.

Next is a happy team that made a LED light that can adjust the color and saturation of light and modulate upon command.

Not all projects are innovative. This project from Philips ultrasound division involved upgrading an old impedance measuring device to function with the newest hardware and software, in short a project that many computer engineers will experience; what to do with legacy hardware and software.

Next was a project to utilize the internet of things.

 

This project was interesting: Modify existing wood carving software to get a realistic wood carving of a dog from a photo.

They certainly seem happy!

My favorite project this year was to use a hololens to make an image of a liver projected in 3D in the hololens. The object was to help the surgeon by identifying nerves and vessels to improve the accuracy of surgery.

At 3 o’clock it was time for the presentation of the awards. Free Creamery ice cream for everyone!

Another successful Showcase at Penn State University, making yet another batch of world class engineers. Yes, they come from all over the world, one of my teams only had one American!

Duck, Duck, Go bankrupt, California’s energy policy.

Depend on renewable power

is chancy in sunshine or shower.

California’s surge

is becoming a scourge;

the losses add up every hour.

It started innocently enough. In 2012 the California power demand was nearly constant, with power varying 20% from maximum to minimum hourly demand.

Image result for duck curve california

Then California decided to have 50% of renewable energy by 2030, mostly by solar and wind, and passed it into law, but the hydroelectric capacity could not be increased due to “environmental concerns”.

The push for renewable energy has succeeded beyond their wildest dreams, so the goal may be met in 2020, not 2030. There is one major problem.

What can be done when the wind doesn’t blow and the sun doesn’t shine? The electric need must still be met. And therein lies the problem. The sun only shines during daytime, and there is already a surplus of energy in the middle of the day. This affects the prices for peak power, so mush so, that wind and sun generated energy has to pay to feed the grid. They are heavily subsidized, so as long as the amount they have to pay is less than the subsidy the grid will be fed, and the base generation will have to be lowered to stabilize the grid. The prices range from minus five cents/kWh to about 55 c/kWh. (The peak price has been as high as 98 c/kWh during peak demand.

Image result for duck curve california

Burt that is only part of the problem. The non-renewable electricity providers will have to double the electricity production every day between 5 and 8 p.m. every day. Using capacitors to even out the grid variations solves 0.3% of the problem.Some can be done by using the dams for power generation, but the grid is not built to handle the drastically increased demand, and environmental fights makes it impossible to build out the grid. In addition, the dams are far away from the areas that need the electricity, in other words, it is a mess.

And the consumer is left to pay the extra costs, and the taxpayer is left to pay the extra subsidies.

Talking about subsidies: Electric cars are subsidized to the tune of 2500 to 7500 dollars, and they are recharged when? They are driven mostly during daytime, and when people come home they are put in the charger – at 55 c/kWh to the utility.

Clean energy is not cheap, and it is not clean since the non renewable electric production capacity still has to be fully built up for the time when the sun doesn’t shine and the wind doesn’t blow.

Climate Change on trial in San Francisco Wednesday! A Limerick.

The Climate Changes models on trial

Alarmists are still in denial

Elementary flaw

was the models last straw.

The feedback does not move the dial.

Global warming on trial: Global warming goes on trial at 8.00 am this Wednesday, 21 March 2018, in Court 8 on the 19th floor of the Federal Building at 450 Golden Gate Avenue, San Francisco. Court 8 is the largest of the courtrooms in the Federal District Court of Northern California. They’re clearly expecting a crowd. The 8 am start, rather than the usual 10 am, is because the judge in the case is an early bird.

The judge: His Honor Judge William Haskell Alsup, who will preside over the coyly-titled “People of California” v. British Petroleum plc et al., is not to be underestimated. Judge Alsup, as the senior member of the Northern California Bench (he has been there for almost two decades), gets to pick the cases he likes the look of.  Before he descended to the law (he wanted to help the civil rights movement), he earned a B.S. in engineering at Mississippi State University, and as such will actually understand the science of thermodynamics.

For you all who are interested in the scientific arguments I refer you to:

Global warming on trial and the elementary error of physics that caused the global warming scare

For the rest of you I leave you with this graph:

clip_image016

The feedback term is not positive, clouds provide negative feedback, leaving the global temperature feedback term almost neutral.

clip_image028

The outcome of the case: What will His Honor make of all this? My guess is that he will allow our amicus brief to be filed. With his engineering background, he will have no difficulty in understanding why we say that the notion of catastrophic rather than moderate global warming is rooted in the elementary physical error we have discovered.

Therefore, we hope His Honor will ask all parties to provide formal responses to our brief. On any view, it plainly raises a serious question about whether global warming matters at all – a question that strikes right to the heart not only of the case before him but of numerous other such cases now arising in several jurisdictions – and showing some evidence of careful co-ordination.

Conclusion: The anthropogenic global warming we can now expect will be small, slow, harmless, and even net-beneficial. It is only going to be about 1.2 K this century, or 1.2 K per CO2 doubling. If the parties are not able to demonstrate that we are wrong, and if His Honor accepts that we have proven the result set out publicly and in detail here for the first time, then the global warming scare was indeed based on a strikingly elementary error of physics.

The avowedly alarmist position too hastily adopted by governments and international bureaucratic entities has caused the most egregious misallocation of resources in history.

Ladies and gentlemen, we call time on a 50-year-old scam, in which a small number of corrupt and politicized scientists, paid for by scientifically-illiterate governments panicked by questionable lobby-groups funded by dubious billionaires and foreign governments intent on doing down the West, and egged on by the inept and increasingly totalitarian news media, have conspired to perpetrate a single falsehood: that the science was settled.

Well, it wasn’t.  Christopher Monckton of Brenchley

The piezoelectric effect of tears, a source of power?

The piezoelectric effect

of tears, this we must not neglect.

For the climate change cries

that bring tears to their eyes,

is power that powers their sect.

From wattsupwiththat 

From the UNIVERSITY OF LIMERICK and the “now if we can just keep people wailing about climate change we’ll have sustainable energy” department. Reports are that “weepy Bill McKibben” will be the first large scale electric tears generation facility. Eric Holthaus will be in the control group:


Irish scientists can now produce electricity from tears

A team of Irish scientists has discovered that applying pressure to a protein found in egg whites and tears can generate electricity. The researchers from the Bernal Institute, University of Limerick (UL), Ireland, observed that crystals of lysozyme, a model protein that is abundant in egg whites of birds as well as in the tears, saliva and milk of mammals can generate electricity when pressed. Their report is published today (October 2) in the journal, Applied Physics Letters.

The amount of electricity generated is negligible, but the emotional tension generated can produce strong emotional power.

Twenty-two reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop a Thorium based molten salt fast breeder nuclear reactor to develop our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutron, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

Here are 22 good reasons for Thorium:

1. Cheap and unlimited raw material.

2. Much less TRansUranium waste, 0.01% waste products compared to a Uranium-235 fast breeder.

3. Produces Pu-238 as one of the final TRans Uranium products, in short supply and much in demand for space exploration nuclear power.

4. Radioactive waste decays down to background radiation in 300 years instead of a million years.

5. Does not produce Plutonium 239, which is the preferred material used in nuclear bombs.

6. Produces isotopes that helps cure certain cancers.

7. Thorium Nuclear Reactors are earthquake safe.

8. No risk for a meltdown, the fuel is already molten.

9. Very high negative temperature coefficient leading to a safe and stable control.

10. Atmospheric pressure operating conditions, no risk for explosions.

11. Virtually no spent fuel problem, no storage or transport.

12.  Scales beautifully from small portable generators to full size power plants.

13. No need for evacuation zones, can be placed near urban areas.

14. Rapid response to increased or decreased power demands.

15. Lessens the need for an expanded national grid.

16. Russia has a Thorium program.

17. China is having a massive Thorium program.

18. India has an active Thorium program.

19.Lawrence Livermore Laboratories is developing a small portable self-contained Thorium reactor capable of being carried on a low-bed trailer.

20. The need for a Yucca Mountain nuclear storage facility will eventually go away.

21. Produces electricity at a cost of about 4 c/kWh.

22. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

1. Cheap and unlimited raw material. There is enough Thorium around for a million years at today’s worldwide energy generation level , and not only that, it is a by-product of mining heavy metals and rare earth metals. The price is the cost of extracting and refining, which can be as low as $40/Kg. No extra mining required for extracting the Thorium.

2. Much less TRansUranium waste, 0.01% waste products compared to a Uranium-235 fast breeder. The Thorium process has a much higher efficiency in fission than  the Uranium process. See the figure below.

3. Produces Pu-238 as one of the final TRans Uranium products, in short supply and much in demand for space exploration nuclear power.

NASA relies on pu-238 to power long-lasting spacecraft batteries that transform heat into electricity. With foreign and domestic supplies dwindling, NASA officials are worried the shortage will prevent the agency from sending spacecraft to the outer planets and other destinations where sunlight is scarce. Thorium reactors produce PU-238 as a “free” byproduct.  In 2009 Congress denied a request to produce more Pu-238 by traditional means, instead relying on Russia to sell us the plutonium. (Remember the Russian reset?) Russia made their last delivery in 2010.

4. Radioactive waste decays down to background radiation in 300 years instead of a million years. Initially a Thorium reactor produces as much radioactivity as other nuclear reactors, since fission converts mass to heat, but the decay products have a much shorter half-life. See the figure below.

5. Does not produce Plutonium239, which is the preferred material used in nuclear bombs. The higher Plutonium isotopes and other TRansUraniums are about as nasty as they get, and need expensive protection against terror attacks, and need to be stored for a very long time.

6. Produces isotopes that helps cure certain cancers. For decades, medical researchers have sought treatments for cancer. Now, Alpha Particle Immunotherapy offers a promising treatment for many forms of cancer, and perhaps a cure. Unfortunately, the most promising alpha-emitting medical isotopes, actinium-225 and its daughter, bismuth-213, are not available in sufficient quantity to support current research, much less therapeutic use. In fact, there are only three sources in the world that largely “milk” these isotopes from less than 2 grams of thorium source material. Additional supplies were not forthcoming. Fortunately, scientists and engineers at Idaho National Laboratory identified 40-year-old reactor fuel stored at the lab as a substantial untapped resource and developed Medical Actinium for Therapeutic Treatment, or MATT, which consists of two innovative processes (MATT-CAR and MATT-BAR) to recover this valuable medical isotope.

7. Earthquake safe. Thorium reactors have a very simple and compact design where gravity is the only thing needed to stop the nuclear reaction. Conventional Nuclear reactors depend on external power to shut down after a SCRAM, where poison rods fall down to halt the reaction.  The next figure shows the concept of a Thorium reactor.

The idea is to empty the fissile U-233 core through gravity alone. Since the fuel is already molten, it can run out into channels like pig-iron into cooling heat exchangers with  water supplied through gravity alone.

As we can see the reactor hardened structure is compact, and can be completely earthquake and tsunami proof. What can be sheared off are the steam pipes and external power, but the shutdown can complete without additional power.

8. No risk for a meltdown, the fuel is already molten. The fuel in a Thorium reactor is U-233 in the form of UraniumFluoride (UF4) salt that also contains Lithium and Beryllium, in its molten form it has a very low vapor pressure. The salt flows easily through the heat exchangers and the separators. The salt is very toxic, but it is completely sealed.

9. Very high negative temperature coefficient leading to a safe and stable control. This is another beauty of the molten salt design. The temperature coefficient is highly negative, leading to a safe design with simple and consistent feedback. What does that mean?  It means that if temperature in the core rises, the efficiency of the reaction goes down, leading to less heat generated. There is no risk for a thermal runaway. In contrast, Chernobyl used graphite moderated Uranium , and it suffered a thermal runaway as the operators bypassed three safety circuits trying to capture the last remaining power during a normal shut-down. The reactor splat, the graphite caught fire and the rest is history. Five days later two nuclear installations in Sweden shut down their reactors due to excessive radiation, but it took a while before they could figure out what had happened. First then did the Soviets confess there had been an accident.

10. Atmospheric pressure operating conditions, no risk for explosions. Materials subjected to high radiation tend to get brittle or soften up. Thorium reactors operate under atmospheric conditions so the choice of materials that can withstand both high temperatures and high radiation is much greater, leading to a superior and less expensive design.  There is no high pressure gas buildup and the separation stage can be greatly simplified.

11. Virtually no spent fuel problem, no storage or transport. I am following the events at Fukushima Nuclear Power plants with great interest. How ironic that the greatest risk is with the spent fuel, not with the inability to shut down the working units. The spent fuel issue is the real Achilles’ heel of the Nuclear Power Industry. Thorium power works differently as nearly all fuel gets consumed as it is generated. When the process shuts down, that is it. Only the radioactivity that is en route so to say will have to be accounted for, not everything generated thus far in the process. The difference is about 10000 to one in the size of the problem. Time to switch over to Thorium.

12.  Scales beautifully from small portable generators to full size power plants. One of the first applications was as an airborne nuclear reactor.

 Granted this was not a Thorium breeder reactor, but it proves nuclear reactors can be made lightweight. Thorium reactor may be made even lighter as long as they are not of the breeder type.

13. No need for evacuation zones, can be placed near urban areas. Thorium reactors operate at atmospheric pressure and have a very high negative temperature coefficient, so there is no risk for a boil-over. They are easily made earthquake-safe since no pressure vessel is needed.

14. Rapid response to increased or decreased power demands. The increase in power output to increased power demand is faster than in coal-fired power plant. All you have to do is increase the speed of flow in the core and it will respond with raised temperature.

15. Lessens the need for an expanded national grid. The National Electric grid is at the breaking point. It needs to be expanded, but neighborhood resistance is building in many areas where they need an expansion the most. The grid is also sensitive to terrorism activities.

 As we can see the national grid is extensive, and under constant strain. A way to lessen the dependency on the national grid is to sprinkle it with many small to medium sized Thorium Nuclear Power generators.  They can be placed on barges in rivers and along the coast, giving the grid maximum flexibility to respond in  case of an emergency.

16. Russia has a Thorium program This is a self-contained Thorium Nuclear Reactor on a barge. Coolant readily available. Hoist it a couple of cables and the town will have all the power it needs.

17. China is having a massive Thorium program. The People’s Republic of China has initiated a research and development project in thorium molten-salt reactor technology, it was announced in the Chinese Academy of Sciences (CAS) annual conference on Tuesday, January 25. An article in the Wenhui News followed on Wednesday. Chinese researchers also announced this development on the Energy from Thorium Discussion Forum. Led by Dr. Jiang Mianheng, a graduate of Drexel University in electrical engineering, the thorium MSR efforts aims not only to develop the technology but to secure intellectual property rights to its implementation. This may be one of the reasons that the Chinese have not joined the international Gen-IV effort for MSR development, since part of that involves technology exchange. Neither the US nor Russia have joined the MSR Gen-IV effort either. A Chinese delegation led by Dr. Jiang travelled to Oak Ridge National Lab last fall to learn more about MSR technology and told lab leadership of their plans to develop a thorium-fueled MSR.The Chinese also recognize that a thorium-fueled MSR is best run with uranium-233 fuel, which inevitably contains impurities (uranium-232 and its decay products) that preclude its use in nuclear weapons. Operating an MSR on the “pure” fuel cycle of thorium and uranium-233 means that a breakeven conversion ratio can be achieved, and after being started on uranium-233, only thorium is required for indefinite operation and power generation.

18. India has an active Thorium program. • India has a flourishing and largely indigenous nuclear power program and expects to have 20,000 MWe nuclear capacity on line by 2020 and 63,000 MWe by 2032.  It aims to supply 25% of electricity from nuclear power by 2050. • Because India is outside the Nuclear Non-Proliferation Treaty due to its weapons program, it was for 34 years largely excluded from trade in nuclear plant or materials, which has hampered its development of civil nuclear energy until 2009. • Due to these trade bans and lack of indigenous uranium, India has uniquely been developing a nuclear fuel cycle to exploit its reserves of thorium. • Now, foreign technology and fuel are expected to boost India’s nuclear power plans considerably.  All plants will have high indigenous engineering content. • India has a vision of becoming a world leader in nuclear technology due to its expertise in fast reactors and thorium fuel cycle. • India’s Kakrapar-1 reactor is the world’s first reactor which uses thorium rather than depleted uranium to achieve power flattening across the reactor core. India, which has about 25% of the world’s thorium reserves, is developing a 300 MW prototype of a thorium-based Advanced Heavy Water Reactor (AHWR). The prototype is expected to be fully operational by 2011, following which five more reactors will be constructed. Considered to be a global leader in thorium-based fuel, India’s new thorium reactor is a fast-breeder reactor and uses a plutonium core rather than an accelerator to produce neutrons. As accelerator-based systems can operate at sub-criticality they could be developed too, but that would require more research. India currently envisages meeting 30% of its electricity demand through thorium-based reactors by 2050.

19.Lawrence Livermore Laboratories is developing a small portable self-contained Thorium reactor capable of being carried on a low-bed trailer. A Democratic member of the United States House of Congress (Joseph Sestak) in 2010 added funding for research and development for a reactor that could use thorium as fuel and fit on a destroyer-sized ship.  Lawrence Livermore national laboratories are currently in the process of designing such a self-contained (3 meters by 15 meters) thorium reactor. Called SSTAR (Small, Sealed, Transportable, Autonomous Reactor), this next-generation reactor will produce 10 to 100 megawatts electric and can be safely transported via ship or truck.  The first units are expected to arrive in 2015, be tamper resistant, passively failsafe and have a operative life of 30+ years.

20. The need for a Yucca Mountain nuclear storage facility will eventually go away. Since Thorium consumes the fissile material as it is getting created, the need for a long term storage facility of the Yucca Mountain type will eventually go away. In remote locations there can be built Thorium Nuclear Power generators that consume spent material from other nuclear processes. The need to do it in remote locations is the hazard of the already existing nuclear wastes. It should be possible to reduce the existing stockpile of nuclear wastes and nuclear bombs by about 90% and make electricity in the process. The cost to do this is higher than the normal process due to the additional cost of security.

21. Produces electricity at a cost of about 4 c/kWh.  The cost to produce electricity with Thorium generators should be about 40% less than Advanced Nuclear and about 30 % less than from Coal (with scrubbers). Solar generation is about 4 times more expensive (without subsidies) Wind power is cheaper when the wind blows, but the generation capacity has to be there even when the wind doesn’t blow, so the only gain from wind power is to lessen the mining or extraction of carbon.  Even if we double the renewable power we will only go from 3.6% to 7.2% of total energy needed.  Hydroelectric  power is for all practical purpose maxed out, so all future increase must come from Coal, Natural Gas, Petroleum or Nuclear. Thorium powered Nuclear Generators is the way to go.

Many of the pictures are from a slide presentation given by David Archibald in Melbourne Feb 5 2011. He posted it “for the benefit of all” which I have interpreted as waving the copyright of the pictures

http://wattsupwiththat.com/2011/02/12/david-archibald-on-climate-and-energy-security/

Bill Nye once on gender probability, A Limerick

What makes you a girl or a boy?

As Chromosomes unfurl with joy

its XX or XY

only 2, and that’s why

it’s woman or man, let’s enjoy.

Or, as the French say: Vive la différence! But then again, the French have a fully gendered language. Everything has a gender, male or female, nothing transgender.

We have come a long way. Bill Nye, the “Science Guy” showed a skit on Netflix that I cannot repost here, it is so gross, essentially claiming that anything goes sexually, and anything is “morally” equivalent. (By objecting to it, I guess it makes me a homophobic, transphobic, xenophobic, omniphobic hater.) Or, maybe I am like the Bill Nye of the 1990’s, here using a girl to explain probability.

From this we learn that the Bible is right:

Genesis 1:27, KJV  So God created man in his own image, in the image of God created he him; male and female created he them.

This is not hate, it is God-given biological truth.

 

Thanks to clouds, the temperature governor is alive and well on planet earth.

In real estate appraisals the three most important factors to determine the value of a property are: Location, location, location.

Likewise, in climate modeling the three most important factors to estimate the future climate on earth are: Clouds, clouds, clouds.

CO2 is a strong greenhouse gas, second only to water vapor in affecting the climate on earth. If CO2 were to double from pre-industrial times, which it will have done in 50 years or so, global temperatures on earth will increase about 0.9 degree Celsius from pre-industrial times, if that was the only factor affecting the greenhouse effect. This corresponds to a radiative forcing of  4.9 W/m2. But water vapor is a stronger greenhouse gas than CO2, and, this is important, they are not orthogonal as defined by chemometrics, that means, the responses from water vapor and CO2 are not independent, and they are only partly additive. Check this figure: The bottom line is the absorption of water vapor, the green line is for CO2. The area of interest is between 8 and 20 microns, where CO2 absorbs more than H20 and is at the maximum of outgoing black body emission at 0F. The CO2 concentration is on the order of 400 ppm, the average global H2O concentration at surface level is around 12,500 ppm. Since both H2O and CO2 absorb in the same area, if water vapor concentration is more than 30 times higher, the CO2 con- centration doesn’t matter, it is all absorbed by H2O, and this is the reason there is no hotspot in the equatorial troposphere. All climate models predict there must be one, so there must be something seriously wrong with all climate models. Let us take a look at what factors IPCC consider in the consensus of climate models. See the following table:

This table is listing all the possible contributions to radiative forcings that IPCC chose to list. It does include the effect of aerosols on clouds, but it assumes that this is the sum total of the effect of clouds. Let us take a look at a picture of  earth from space:The first impression of earth from space is: How beautiful! Green land, brown mountains, blue oceans and absolutely white clouds! The clouds seem to reflect all incoming sunlight, and indeed, clouds can have an albedo of about 0.9, versus ocean with an albedo of about 0,07. Taking a look at the energy flows, we can see that the clouds reflect about 79 W/m-2 back into space, or about 23% of the incoming sunlight.

But that is only half the story. Clouds are even more important than that for the energy balance of the earth. If you have a house with no air conditioning, and it is hot in the summer, you close the windows and close the shades during the day to keep the hot air and the sunshine out. Then during the night you open the windows and shades to let the cooler air in. In the winter you do the opposite, during the day you may or may not open the windows dependent on the temperature, but you always let in as much sunshine as possible. Then at night you draw the shades to retain as much warmth as possible. By manipulating the windows and shades you provided the negative feedback to keep the house somewhat temperature controlled. In fact, you acted as a governor, providing the negative feedback necessary to keep the house temperature controlled.

It is the same with clouds, they cool by day and warm by night, and they come and go, so it does matter a great deal when they do appear. At the risk of oversimplification let me take a stab at 3 cloud types, clouds, clouds, clouds.

Cumulus clouds, also called “Beautiful weather clouds.”  The best example comes from Willis Eschenbach from his observations on a tropical island. The morning starts clear, and as the sun heats the moist air cumulus clouds appear around 9 a.m., and the temperature goes down!

Cumulus clouds have an albedo of about 0.9, so 90% of the incoming radiation of  341 W/m2, or up to 300 W/m2 less solar heat reaches ground at mid day.

The sun continues its path, and by mid afternoon Cumulonimbus clouds may appear. They are also called thunderstorms. In addition to have a very high albedo, they transfer a lot of heat to the upper atmosphere, rain out, keeping the ecosystem going, and cool the lower atmosphere.

The third very important type of clouds are frontal clouds. They carry energy in the form of water vapor from one area to another, in the northern temperate region typically from Southwest to Northeast, but they can also follow the jet stream, which exhibits a wave pattern.

The long and short of this oversimplification is that even a one percent change in the global average of cloud cover means more to the energy balance than all the factors listed by IPCC. In addition, cloud averages are misleading, day clouds cool, night clouds warm. So how are the climate models doing? Check this figure:

Not very encouraging. They all miss the mark. The only way to explain this discrepancy is that they all put too much emphasis on CO2 and way too little on clouds. But it helps to explain why they all miss the mark. See fig.

The clouds are the main temperature regulator in the ecosystem, providing a strong negative feedback once the temperature is favorable for cloud formation. Unless the oceans run dry we will never have to worry about a thermal runaway.

However, it can get cold, and we will get another ice age, which is the normal steady state for the earth. This will start by increasing cloud cover for whatever reason. Let me name a few:

Volcanoes: Volcanic eruptions like Pinatubo can decrease global temperatures by a degree or so for a few years. A super volcano like Yosemite erupting will trigger the next ice age.

Solar cycles: Solar cycle 24 is the most quiet in a century. A new solar minimum is to occur in the next few years and solar cycle 25 promises to be even quieter. When this happened last time it caused the little ice age, the winters were brutal indeed, and cloud covers increased, cooling the earth by at least half a degree.

The earth’s magnetic field is starting to act erratically. The magnetic north pole is speeding up and is now way up in the Arctic, near the North pole. The chart on the right shows the observed north dip poles during 1831 – 2007 as yellow squares. Modeled pole locations from 1590 to 2020 are circles progressing from blue to yellow. In addition the magnetic field is getting substantially weaker, maybe a breakup is possible having two North Poles and two South Poles. If this occurs, the protection from the cosmic radiation from the Sun will be weakened, causing more clouds and maybe trigger the next ice age.

Then there is the double star KIC 9832227. They are only 1,800 light-years away,  an eclipsing binary pair, which means as they revolve around one another, each one briefly blots out the other from the perspective of a viewer on Earth. In 2021 or 2022 we will see them merge into one causing a red supernova. When this happens, because they are so close, we may even observe gravity waves. But from a climate standpoint there will be a burst of cosmic radiation, first the gamma rays coming at the speed of light, then with a slight delay the other cosmic radiation, coming at a time of the solar minimum and an unusually weak earth magnetic field.

This is new territory, and the best we can do is to increase CO2. It will not help much, but CO2 will help rather than hurt.

In any case, we are going to a cooler earth, and it is only a matter of time until we enter another ice age. The good news is, there is still time to develop and switch to Thorium based nuclear power generation when coal and oil are exhausted, and there is unlimited quantities of limestone to degass and make cement to keep the CO2 level up.

The good news is that thanks to increasing CO2 vegetation is increasing, reducing erosion, feeding another 2 billion people without starving, and also the fauna. The benefits flow from industrialized nations to developing nations that cannot afford fertilizers but benefit from the increased CO2. In addition, photo synthesis occur more efficiently, using less water with increasing CO2.