CO2 concentration has increased 50% since pre-industrial times. Is that good or bad?

 

As CO2 warms up the poles

burned oil, gas and coal play their roles.

CO2 is still good;

makes plants green, grows more food,

and clouds are the climate controls.

Greta Thunberg, 17; Times person of the year 2019 was at it again, this time in Davos at the annual World Economic Forum. She was allowed to give a 30 minute speech to all the dignitaries assembled, who had generated 18090 metric tons of CO2 (source CNN) getting there in their jets. Her message was:

“Let’s be clear. We don’t need a ‘low carbon economy.’ We don’t need to ‘lower emissions,” … “Our emissions have to stop if we are to have a chance to stay below the 1.5-degree target,”  (The New York Times.)

We have experienced a 50% increase in CO2 levels since the beginning of industrialization. In the last 30 years the level has risen 17%, from about 350 ppm to nearly 410 ppm. This is what scares people. Is is time to panic and stop carbon emissions altogether as Greta Thunberg suggested?

As if on cue the climate models have been adjusted, and they suddenly show a much higher rate of temperature increase, in this case what is supposed to happen to global temperatures for a doubling of CO2 from pre-industrial times, from 270ppm to 540ppm.

 

 

 

There are two ways to approach this problem. The models make certain assumptions about the behavior of the changing atmosphere and model future temperature changes. This is the approach from IPCC for the last 32 years. These models are all failing miserably when compared to actual temperature changes.

The other way i to observe what is actually happening to our temperature over time as the CO2 increases. We have 50 years of excellent global temperature data, so with these we can see where, when and by how much the earth has warmed.

The most drastic temperature rise on earth has been in the Arctic above the 80th latitude. In the winter of 2018 it was 8C above the 50 year average. See charts from the Danish Meteorological Institute:

 

 

 

 

 

 

Note, there is no increase at all in the summer temperatures!

 

 

 

 

 

 

The fall temperature saw an increase of 5C and the spring temperature saw an increase of about 2.5C.

The 2020 winter has so far seen an about 4c increase Source: DMI.

 

 

This 8C winter rise of temperature is significant, most would even say alarming, but my response is, why is that?

To get the answer we must study molecular absorption spectroscopy and explain a couple of facts for the 97% of all scientists who have not studied molecular spectroscopy. IPCC and most scientists claim that the greenhouse effect is dependent on the gases that are in the atmosphere, and their combined effect is additive according to a logarithmic formula. This is true up to a certain point, but it is not possible to absorb more than 100% of all the energy available in a certain frequency band! For example: If water vapor absorbs 90% of all incoming energy in a certain band, and CO2 absorbs another 50% of the energy in the same band, the result is that 95% is absorbed, (90% + 50% * (100% – 90%)),  not 140%, (90% + 50%).

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency range s they absorb.

 

 

 

 

 

 

For this we will have to look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

 

 

 

 

 

 

 

 

 

 

The red area represents the observed amount of solar radiation that reaches the earth’s surface. the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is re-emitted. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us  now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 microns. Of them the 2.7 and 4.3 micron bands absorb where there is little black body radiation, the only band that counts is at 15 microns, and that is in a band where the black body radiation has its maximum. However it is also in a band where water vapor also absorb, not as much as CO2,only about 20% to 70% as much. Water vapor or absolute humidity is highly dependent on the temperature of the air, so at 30C there may be 50 times as much water vapor, at 0C there may be ten times as much water vapor, and at -25C there may be more CO2 than water vapor. At those low temperatures the gases are mostly additive. In the tropics with fifty times more water vapor than CO2, increased CO2 has no influence on the temperature whatsoever. Temperature charts confirm this assertion:

 

 

 

 

 

 

 

 

 

Here the temperature in the tropics displays no trend whatsoever. It follows the temperature of the oceans, goes up in an el nino and down in a la nina. The temperature in the southern hemisphere shows no trend. In the northern temperate region there is a slight increase, but the great increase is occurring in the Arctic. There is no increase in the Antarctic yet even though the increase in CO2 is greater in the Antarctic and the winter temperature in the Antarctic is even lower than in the Arctic. So CO2 increase cannot be the sole answer to the winter temperature increase in the Arctic.

There is the obvious answer. When temperatures increase the air can contain more moisture and transport even more moisture from the tropics,all the way to the arctic, where it ends up as snow. Is the snow increasing in the Arctic?

Let us see what the snow statistics show. These are from the Rutgers snow lab.

The fall snow extent is increasing, and has increased by more than 2 percent per year.

 

The winter snowfall has also increased but only by 0.04 percent per year. The snow covers all of Russia, Northern China, Mongolia, Tibet, Kashmir and northern Pakistan, Northern Afghanistan, Northern Iran, Turkey, Part of Eastern Europe, Scandinavia, Canada, Alaska, Greenland and part of Western and Northern United States.

In the spring on the other hand the snow pack is melting faster, about 1.6 percent less snow per year. One of the major reasons for an earlier snowmelt is that the air is getting dirtier, especially over China, and to some extent Russia. The soot from burning coal and mining and manufacturing changes the albedo of the snow. The soot is visible on old snow all the way up to the North Pole. The other reason is that the poles are getting warmer. In the fall and winter it is mostly due to increased snowfall, but in the spring, as soon as the temperature rises over the freezing point, melting occurs.

So the warming of the poles, far from being an impending end of mankind as we know it, may even be beneficial. Warmer poles in the winter means less temperature gradient between the poles and the tropics, leading to less severe storms. They will still be there, but less severe.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, done with only the fertilizer of CO2 the earth can now keep another 2 billion people from starvation, not to mention what it does to plants and wildlife.

Having said that, I am still a conservationist. Coal, oil and gas will run out at some time, and I for one would like to save some for my great grandchildren, not yer born. In addition I would like to minimize the need for mining, which can be quite destructive.

The best solution is to switch most electricity generation to Thorium molten salt nuclear power. There are multiple reasons why this should be done as a priority.

Twenty-five reasons to rapidly develop Thorium based Nuclear Power generation.

We need badly to develop and build Thorium based molten salt fast breeder nuclear reactors to secure our energy needs in the future. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissible material than it consumes, in the case of Thorium the ratio is about 1.05.

1. A million years supply at today’s consumption levels.

2. Thorium already mined, ready to be extracted.

3. One ten-thousandth of the TRansUranium waste compared to a U-235 based fast breeder reactor.

4. Thorium based nuclear power produces Pu-238, needed for space exploration.

5. Radioactive waste from an LFTR decays down to background radiation in 300 years compared to a million years for U-235 based reactors.

6. Thorium based nuclear power is not suited for making nuclear bombs.

7. Produces isotopes that helps cure certain cancers.

8. Molten Salt Thorium Reactors are earthquake safe.

9. Molten Salt Thorium Reactors cannot have a meltdown, the fuel is already molten.

10. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

11. Atmospheric pressure operating conditions, no risk for explosions.

12. Virtually no spent fuel problem, very little on site storage or transport.

13. Thorium Nuclear Power generators  scale  beautifully from small portable generators to full size power plants.

14. No need for evacuation zones, can be placed near urban areas.

15. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

16. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

17. Russia has an active Thorium program.

18. China is having a massive Thorium program.

19. India is having an ambitious Thorium program.

20. United States used to be the leader in Thorium usage. What happened?

21. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

22. With a Molten Salt Reactor, disasters like Chernobyl are impossible.

23. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

24. Produces electrical energy at about 4 cents per KWh.

25. Can deplete some of the existing radioactive waste and nuclear weapons stockpiles.

 

 

 

 

 

 

 

Published by

lenbilen

Retired engineer, graduated from Chalmers Technical University a long time ago with a degree in Technical Physics. Career in Aerospace, Analytical Chemistry, computer chip manufacturing and finally adjunct faculty at Pennsylvania State University, taught just one course in Computer Engineering, the Capstone Course.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.