The inflationary aspects of the “Inflation Reduction Act”. The “Green New deal” is wrong. There is a better way to do clean energy.

Below is the experience from the European union of retail cost of electricity in all member nations from the year 2019, the last year to make any meaningful analysis, Covid and the Ukraine war has made worthless any newer analysis.

This slide tells it best. The real cost for Solar and Wind electricity is 5.7 times that of the average of coal, gas, nuclear and hydro-electric power. The real reason is that you still need all the generating power for when the wind doesn’t blow enough or too much, and the sun doesn’t shine, which is most of the time. In addition, solar panels and windmills require mining of rare earth metals, and are as such highly mining intensive. Then there is the cost of disposal, which has already begun for first generation wind mills and solar panels.

The solution is simple: Do not buy any more solar panels from China! Let them use them themselves, they may then only have to build a thousand new dirty lignite coal fired power plants instead of 1171 between now and 2030

The other inflationary thing is the rising cost of Lithium and rare earth metals. In 2020 the price of LiCO2 was around 40,000 yuan/ton (yes, Lithium and rare earth metals are traded in Chinese currency). The price since then has more than twelve-folded and is now close to half a million yuan/ton.

China produces three-quarters of all lithium-ion batteries and is home to 70% of production capacity for cathodes and 85% for anodes (both are key components of batteries).

Over half of lithium, cobalt and graphite processing and refining capacity is also located in China. The U.S has a high quality rare earth metal mine in Mountain Pass, CA.,

but the refining is done in China. In June 2022 Amarillo, Texas had a groundbreaking ceremony for a rare earth metals refinery, so refining capacity will finally return to the U.S. See more here. Below is a chart of the worldwide mining of rare earth metals. Notice the prominent role Myanmar plays in rare earth metals. China is positioning itself to dominate Myanmar for their metals and to build an oil import pipeline to avoid the Malacca strait choke point.

In 2016, Hunter Biden’s Bohai Harvest RST invested in China’s Contemporary Amperex Technology Co. (CATL), the world’s largest lithium ion battery producer.

Remember this every time you hear Joe Biden talk about Green new deal and electric vehicles.

So, my suggestion is simple: Do not buy any solar panels from China, let them install them in China at 4.7 times the price of coal power. this is a much cleaner global investment. China was planning to build 1171 new coal plants polluting more than our clean coal could ever do. Likewise do not buy any more wind mill generators from China, let them install them in China. Wait to promote electric vehicles until the grid is built up to handle the additional demand for electricity.

This would save about 430 billion dollars from the inflation reduction act. What can we do instead and achieve an even better outcome? Check this video.

What shall be done? Congress must immediately pass SB4242. Ten years ago I made the same observation, see here. At that time there was 1400 kg U-233 remaining at Oak Ridge. A ton has been downblended since then. It is late, but not too late to save the rest. Here is a very illuminating video:

I agree totally with this video. Molten salt Thorium reactors can produce electricity for less than 5 cents per kilowatt-hour, comparable to coal and five times less than wind and solar when mass produced as SMR’s (small Modular Reactors. ) A 100 MW reactor can be built on an assembly line, and the vital parts can be shipped in 3 standard containers over road. They require much less mining to produce than the corresponding windmills and solar panels, and Thorium is already mined as a byproduct of mining rare earth metals. The only cost is therefore the cost of extracting the Thorium.

How is China dealing with Thorium nuclear power? They recently approved starting up their own molten Salt reactor, (source here.

In January 2011, CAS launched a CNY3 billion (USD444 million) R&D programme on liquid fluoride thorium reactors (LFTRs), known there as the thorium-breeding molten-salt reactor (Th-MSR or TMSR), and claimed to have the world’s largest national effort on it, hoping to obtain full intellectual property rights on the technology. This is also known as the fluoride salt-cooled high-temperature reactor (FHR). The TMSR Centre at SINAP at Jiading, Shanghai, is responsible.

Construction of the 2 MWt TMSR-LF1 reactor began in September 2018 and was reportedly completed in August 2021. The prototype was scheduled to be completed in 2024, but work was accelerated.

“According to the relevant provisions of the Nuclear Safety Law of the People’s Republic of China and the Regulations of the People’s Republic of China on the Safety Supervision and Administration of Civilian Nuclear Facilities, our bureau has conducted a technical review of the application documents you submitted, and believes that your 2 MWt liquid fuel thorium-based molten salt experimental reactor commissioning plan (Version V1.3) is acceptable and is hereby approved,” the Ministry of Ecology and Environment told SINAP on 2 August.

It added: “During the commissioning process of your 2 MWt liquid fuel thorium-based molten salt experimental reactor, you should strictly implement this plan to ensure the effectiveness of the implementation of the plan and ensure the safety and quality of debugging. If any major abnormality occurs during the commissioning process, it should be reported to our bureau and the Northwest Nuclear and Radiation Safety Supervision Station in time.”

The TMSR-LF1 will use fuel enriched to under 20% U-235, have a thorium inventory of about 50 kg and conversion ratio of about 0.1. A fertile blanket of lithium-beryllium fluoride (FLiBe) with 99.95% Li-7 will be used, and fuel as UF4.

The project is expected to start on a batch basis with some online refueling and removal of gaseous fission products, but discharging all fuel salt after 5-8 years for reprocessing and separation of fission products and minor actinides for storage. It will proceed to a continuous process of recycling salt, uranium and thorium, with online separation of fission products and minor actinides. The reactor will work up from about 20% thorium fission to about 80%.

If the TMSR-LF1 proves successful, China plans to build a reactor with a capacity of 373 MWt by 2030.

As this type of reactor does not require water for cooling, it will be able to operate in desert regions. The Chinese government has plans to build more across the sparsely populated deserts and plains of western China, complementing wind and solar plants and reducing China’s reliance on coal-fired power stations. The reactor may also be built outside China in Belt and Road Initiative nations.

The liquid fuel design is descended from the 1960s Molten-Salt Reactor Experiment at Oak Ridge National Laboratory in the USA.

Researched and written by World Nuclear News.

As of yet China does not have any U233, so they have to use U235 as a start fuel. This will produce PU239 as well as U233, so the separation step is far more complicated. The U.S. still have 450 kg of U233, so the separation step can be made clean, and we can make a clean, breeding reactor with 0,01 % of the nuclear waste if conventional reactors.

The conversion of Thorium 232 to Uranium 233, leading to fission looks like this:

To remain pure, the protactinium mist be separated from the neutron bombarding environment as soon after it is generated as possible to avoid it to be transfered to U 234, which is non fissible, but radioactive. The breeding coefficient is 1.03, which means that 3% more U233 is generated than consumed. The half-life of the Protactinium is 27 days, so it will take up to 900 days for the U233 to double, which is two and a half years.

There is no time to spare. Pass SB4242 immediately, build a clean Molten salt Thorium reactor as soon as possible, remove Thorium as a source material and streamline the permit process so permits can be issued in weeks instead of years.

The thorium energy is the future clean energy until fusion is perfected, not solar panels or windmills, which do far more damage to the environment than Thorium nuclear plants!

The ultimate infrastructure project: A Transcontinental aqueduct to save the American Southwest from becoming a desert.

The American Southwest has always been subject to drought cycles, some worse than the one that is now devastating the area. Below is a very interesting presentation from ASU about a previous civilization in the Phoenix area, thriving and then gone.

Arizona State University presentation

Will it happen again?

The problem:

  1. Lake Mead will be emptied in less than 10 years with the current usage pattern. Then what?
  2. The hydroelectric power from Lake Mead (and Lake Powell) is diminishing as the lakes are emptied.
  3. the aquifers in Arizona, especially in the Phoenix and Tucson area, and to some extent New Mexico and the dry part of Texas are being drawn down and are at risk of being exhausted.
  4. The Salton Sea in the Imperial Valley of California is maybe the most polluted lake in all of U.S.A. It is even dangerous to breathe the air around it sometimes. The area contains maybe the largest Lithium deposit in the world.
  5. The Colorado River water is too salty for good irrigation .
  6. The Colorado river no longer reaches the Gulf of California. Fishing and shrimp harvesting around the Colorado River Delta is no more.
  7. 40 million people depend on the Colorado River for drinking water. The population is still rising rapidly in the West. Will they have water in the future?
  8. Except for California there is not much pumped Hydro-power storage in the American Southwest.
  9. Texas has plenty of wind power, but no pumped hydro-power storage. This makes it difficult to provide peak power when the sun doesn’t shine and the wind doesn’t blow. Nuclear power is of no help, it provides base power only. Peak power has to come from coal and natural gas plants.
  10. New Mexico has some ideal spots for solar panels, but no water is available for pumped storage.
  11. Arizona has a surging population, wind and solar power locations are abundant, but no pumped hydro-power storage.

The solution:

Build a transcontinental aqueduct from the Mississippi River to the Colorado River capable of transporting 15 million acre-ft of water yearly through Louisiana, Texas, New Mexico and Arizona. It will be built similar to the Central Arizona Project aqueduct, supplying water from the Colorado river to the Phoenix and Tucson area, but this aqueduct will be carrying seven times more water over five times the distance and raise the water more than twice as high before returning to near sea level. The original Central Arizona Project cost $4.7 billion in 1980’s money, the Transcontinental Aqueduct will cost around $340 Billion in 2021 money applying simple scaling up principles.

The Mississippi River has a bad reputation for having polluted water, but since the clean water act the water quality has improved drastically. Fecal coli-form bacteria is down by a factor of more than 100, the water is now used all the way down to New Orleans for drinking water after treatment. The lead levels are down by a factor of 1000 or more since 1979. Plastic pollution and pharmaceutical pollution is still a problem, as is the case with most rivers. The Ph is back to around 8 and salt content is negligible. Mississippi water is good for irrigation, and usable for drinking water after treatment.

But the aqueduct will do more than provide sweet Mississippi water to the thirsty South-west, it will make possible to provide peak power to Texas, New Mexico and Arizona. In fact, it is so big it will nearly triple the pumped Hydro-power storage for the nation, from 23 GW for 5 hours a day to up to 66 GW.

The extra pumped hydro-power storage will come from a number of dams built as part of the aqueduct or very adjacent to it. The water will be pumped from surplus wind and solar power generators when available. This will provide up to 20 GW of power for 5 hours a day. If not enough extra power has been generated during the 19 pumping hours, sometimes power will be purchased from the regular grid. The other source of pumped hydro-power storage is virtual. There will be more than 230 100 MW LFTR (Liquid Fluoride salt Thorium Rector) power stations strategically stationed along the waterway providing pumping of water for 19 hours and providing virtual hydro-power output.

These 43 GW of hydro-power capacity will be as follows: Louisiana, 0.4 GW; Texas, 18,5 GW (right now, Texas has no hydro-power storage, but plenty of wind power); New Mexico, 10.5 GW; Arizona 13.6 GW. In Addition, when the Transcontinental Aqueduct is fully built out, the Hoover dam can provide a true 2.2 GW hydro-power storage by pumping water back from Lake Mojave; a 3 billion dollar existing proposal is waiting to be realized once Lake Mead is saved.

The amount of installed hydroelectric power storage is:

U.S. operating hydroelectric pumped storage capacity

Most hydroelectric pumped storage was installed in the 70’s. Now natural gas plants provide most of the peak power. This aqueduct will double, triple the U.S. pumped peak storage if virtual peak storage is included. By being pumped from surplus wind and solar energy as well as nuclear energy it is true “Green power”. Some people like that.

What follows is a description of each leg of the aqueduct. Each leg except legs 9 and 10 ends in a dam, which holds enough water to make each leg free to operate to best use of available electricity and provide peak power on demand.

Leg 1: Atchafalaya river (Mississippi river bypass) to Aquilla lake, a distance of 360 miles.

Leg 2: Aquilla lake to Brad reservoir (to be built), a distance of 100 miles.

Leg 3: Brad reservoir to North of Baird dams. (to be constructed), a distance of 60 miles

Leg 4: North of Baird dams (to be constructed) to East of Sweetwater dam (to be built), a distance of 60 miles.

Leg 5: East of Sweetwater dam (to be constructed) to Grassland Canyon Lake (to be made), a distance of 50 miles.

Leg 6: Grassland Canyon Lake (to be made) to White Oaks Canyon Lake (to be made), a distance of 110 miles.

Leg 7: White Oaks Canyon Lake (to be made) to the Arch Lewis Canyon Lake via a 20 mile tunnel under the Guadaloupe Mountains in New Mexico.

Leg 8: Arch Lewis Canyon Lake to Martin Tank Lake, a distance of 50 miles.

Leg 9: Martin Tank Lake to Poppy Canyon Reservoir, a distance of 210 miles.

Leg 10: The Poppy Canyon Upper and Lower Reservoir. A Hydro-power storage peak power plant.

Leg 10, alternate solution: Poppy Canyon Reservoir to Cove Tank Reservoir, a distance of 13 miles.

Leg 11: Poppy Canyon Reservoir to San Carlos Lake, a distance of 80 miles.

Leg 12: San Carlos Lake to the Colorado river following the Gila river, a distance of 280 miles.