CO2 concentration has increased 50% since pre-industrial times. Is that good or bad? Thorium Nuclear Power is the answer. A Limerick.

As CO2 warms up the poles

burned oil, gas and coal play their roles.

CO2 is still good;

makes plants green, grows more food,

and clouds are the climate controls.

We live in interesting times, the CO2 concentration has increased 50% since the beginning of industrialization. In the last 30 years the level has risen 17%, from about 350 ppm to nearly 410 ppm. This is what scares people. Is is time to panic and stop carbon emissions altogether as Greta Thunberg has suggested?As if on cue the climate models have been adjusted, and they suddenly show a much higher rate of temperature increase, in this case what is supposed to happen to global temperatures for a doubling of CO2 from pre-industrial times, from 270ppm to 540ppm.

There are two ways to approach this problem. The models make certain assumptions about the behavior of the changing atmosphere and model future temperature changes. This is the approach taken by IPCC for the last 32 years. These models are all failing miserably when compared to actual temperature changes.

The other way i to observe what is actually happening to our temperature over time as the CO2 increases. We have 50 years of excellent global temperature data, so with these we can see where, when and by how much the earth has warmed.

The most drastic temperature rise on earth has been in the Arctic above the 80th latitude. In the winter of 2018 it was 8C above the 50 year average. See charts from the Danish Meteorological Institute:

Note, there is no increase at all in the summer temperatures!

The fall temperature saw an increase of 5C and the spring temperature saw an increase of about 2.5C.

The 2020 winter recorded an about 4c increase Source: DMI.

meanT_2020

Notice: In this chart the there is no recorded summer temperature increase at all!

The 5 thru 8C winter rise of temperature is significant, most would even say alarming, but my response is, why is that?

To get the answer we must study molecular absorption spectroscopy and explain a couple of facts for the 97% of all scientists who have not studied molecular spectroscopy. IPCC and most scientists claim that the greenhouse effect is dependent on the gases that are in the atmosphere, and their combined effect is additive according to a logarithmic formula. This is true up to a certain point, but it is not possible to absorb more than 100% of all the energy available in a certain frequency band! For example: If water vapor absorbs 90% of all incoming energy in a certain band, and CO2 absorbs another 50% of the energy in the same band, the result is that 95% is absorbed, (90% + 50% * (100% – 90%)),  not 140%, (90% + 50%).

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency range s they absorb.

For this we will have to look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

The red area represents the observed amount of solar radiation that reaches the earth’s surface, the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is re-emitted. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us  now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 microns. Of them the 2.7 and 4.3 micron bands absorb where there is little black body radiation, the only band that is of interest is at 15 microns, and that is in a band where the black body radiation has its maximum. However it is also in a band where water vapor also absorb, not as much as CO2,only about 20% to 70% as much. Water vapor or absolute humidity is highly dependent on the temperature of the air, so at 30C there may be 50 times as much water vapor, at 0C there may be ten times as much water vapor, and at -25C there may be more CO2 than water vapor. At those low temperatures the gases are mostly additive. In the tropics with fifty times more water vapor than CO2, increased CO2 has no influence on the temperature whatsoever. Temperature charts confirm this assertion:

Here the temperature in the tropics displays no trend whatsoever. It follows the temperature of the oceans, goes up in an El Niño and down in a La Niña. The temperature in the southern hemisphere shows no trend. In the northern temperate region there is a slight increase, but the great increase is occurring in the Arctic. There is no increase in the Antarctic yet even though the increase in CO2 is greater in the Antarctic and the winter temperature in the Antarctic is even lower than in the Arctic. So CO2 increase cannot be the sole answer to the winter temperature increase in the Arctic.

There is an obvious answer. When temperatures increase the air can contain more moisture and will transport more moisture from the tropics all the way to the arctic, where it falls as snow. Is the snow increasing in the Arctic?

Let us see what the snow statistics show. These are from the Rutgers’ snow lab.

nhland_season4

The fall snow extent is increasing, and has increased by more than 2 percent per year.

The winter snowfall has also increased but only by 0.04 percent per year. The snow covers all of Russia, Northern China, Mongolia, Tibet, Kashmir and northern Pakistan, Northern Afghanistan, Northern Iran, Turkey, Part of Eastern Europe, Scandinavia, Canada, Alaska, Greenland and part of Western and Northern United States.

In the spring on the other hand the snow pack is melting faster, about 1.6 percent less snow per year. One of the major reasons for an earlier snow-melt is that the air is getting dirtier, especially over China, and to some extent Russia. The soot from burning coal and mining and manufacturing changes the albedo of the snow. The soot is visible on old snow all the way up to the North Pole. The other reason is that the poles are getting warmer. In the fall and winter it is mostly due to increased snowfall, but in the spring, as soon as the temperature rises over the freezing point, melting occurs.

So the warming of the poles, far from being an impending end of mankind as we know it, may even be beneficial. Warmer poles in the winter means less temperature gradient between the poles and the tropics, leading to less severe storms. They will still be there, but less severe.

There is one great benefit of increased CO2, the greening of the earth.

Thanks to this greening, accomplished with only the fertilizing effect of CO2, the earth can now keep another 2 billion people from starvation, not to mention what it does to plants and wildlife.

Having said that, I am still a conservationist. Coal, oil and gas will run out at some time, and I for one would like to save some for my great grandchildren, not yet born. In addition I would like to minimize the need for mining, which is quite destructive.

The best solution is to switch most electricity generation to Thorium molten salt nuclear power. There are multiple reasons why this should be done as a priority.

Here are some of them:

The case for Thorium. 1. A million year supply of Thorium available worldwide.

The case for Thorium. 2. Thorium already mined, ready to be extracted.

The case for Thorium. 3. Thorium based nuclear power produces 0.012 percent as much TRansUranium waste products as traditional nuclear power.

The case for Thorium. 4. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.

The case for Thorium. 5. Thorium nuclear power is only realistic solution to power space colonies.

The case for Thorium. 6. Radioactive waste from an Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick.

The case for Thorium. 7. Thorium based nuclear power is not suited for making nuclear bombs.

The case tor Thorium. 8. Produces isotopes that helps treat and maybe cure certain cancers.

The case for Thorium. 9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.

The case for Thorium. 10. Molten Salt Liquid Fluoride Thorium Reactors cannot have a meltdown, the fuel is already molten, and it is a continuous process. No need for refueling shutdowns.

The case for Thorium. 11. Molten Salt Nuclear Reactors have a very high negative temperature coefficient leading to a safe and stable control.

The case for Thorium 13. Virtually no spent fuel problem, very little on site storage or transport.

The case for Thorium. 14. Liquid Fluoride Thorium Nuclear reactors scale beautifully from small portable generators to full size power plants.

The case for Thorium. 15. No need for evacuation zones, Liquid Fuel Thorium Reactors can be placed near urban areas.

The case for Thorium. 16. Liquid Fluoride Thorium Reactors will work both as Base Load and Load Following power plants.

The case for Thorium. 17. Liquid Fluoride Thorium Reactors will lessen the need for an expanded national grid.

The case for Thorium. 18. Russia has an active Thorium program.

The case for Thorium. 19. India is having an ambitious Thorium program, planning to meet 30% of its electricity demand via Thorium based reactors by 2050.

The case for Thorium 20. China is having a massive Thorium program.

The case for Thorium. 21. United States used to be the leader in Thorium usage. What happened?

The case for Thorium. 22. With a Molten Salt Reactor, accidents like the Three Mile Island disaster will not happen.

The case for Thorium. 23. With a Molten Salt Reactor, accidents like Chernobyl are impossible.

The case for Thorium. 24. With Molten Salt Reactors, a catastrophe like Fukushima cannot happen.

The case for Thorium. 25. Will produce electrical energy at about 4 cents per kWh.

The case for Thorium. 26. Can deplete most of the existing radioactive waste and nuclear weapons stockpiles.

The case for Thorium. 27. With electric cars and trucks replacing combustion engine cars, only Thorium Nuclear power is the rational solution to provide the extra electric power needed.

The case for Thorium 28. The race for space colonies is on. Only Molten Salt Thorium Nuclear reactors can fit the bill.

Good news on the corona-virus. Death rates are down drastically in most countries. Sweden is now a leader in COVID recovery.

The Corona-virus pandemic has now been with us half a year and for the first time the trends ate looking better, giving us hope that the worst is over.

In the beginning the worldwide death rate was 8,65% and it is now down to 2.23%, a reduction of 74.2%. Total deaths worldwide are about 700,000 which is still less then the annual TB deaths that amount to 1.6 million, of which 300,000 are HIV positive.

The corresponding numbers for U.S.A :  7.02%  death rate at the beginning of the disease. Ir is now down to 1.84%, a 74% decrease. With unrestricted availability to take HCQ+ we can reduce the death rate even further.

Now it is getting interesting. While nearly all industrialized nations shut down their non-essential functions, such as schools, elective surgery, elective medical diagnostics, non food stores, flights, travel, restaurants, non essential government services and the like Sweden took a different approach. They kept their elementary schools open, did not close stores and restaurants, only mandated increased hygiene and practice social distancing, and then they let the virus rage as a normal flu, and waited for the so called “herd immunity.” Sweden did their best. though to protect the vulnerable.

In the beginning the results were disastrous. The initial death rate was over 21%, it seemed  like a failed attempt, but then things started to calm down. In late spring the death rate had settled down to 9.2%, but then came a second wave of cases and everyone was bracing for the worst. But the death rate  did not rise, and is now down to 0.41%. Let the charts speak for themselves:

New cases do not disappear altogether, they may even rise as sporting events and large gatherings resume.

Deaths are way down. Maybe “herd immunity”  is achieved? Time will tell.

The death charts from Sweden gives me hope, even for a state like Florida. It escaped the early peak of cases, the most vulnerable were protected, so the max death rate was held at 7.74%. In June the teal wave of cases came, and was climbing until mid July, after which the daily new cases have declined. The deaths were rising until Aug 1, after which they too will follow the Swedish decline and “herd immunity will be reached in three months, if personal hygiene and social distancing protocols are still obeyed.  Here are the charts for Florida:

 

These charts follow the Swedish charts, but with a 3 month delay.