The Transcontinental Aqueduct, spur 15: The Poppy Canyon Solar farm and pumped storage plant

One of the many problems facing solar farms is that they produce electricity only when the sun shines, which is less than half the time, so for the rest of the time electricity must be provided some other way. Historically peak power demands were provided by pumped storage plant, but very few have been built since the 70’s. Peak power is now supplied by natural gas electric plants, which is for now the most economic solution. If we want to get real about reducing our fossil fuel dependence, pumped storage must be looked at seriously, especially when changing our vehicle fleet from gasoline or diesel fuel to electric power source.

Here is spur 15 proposal sketch

Spur 15 is 7 miles long, starting at 3950′ and ending at 4750′

Dam 1 is the Poppy Canyon Upper Lake. To fill this lake in a year requires Spur 15 to have a capacity of 330 cfs. It will require 240 GWh to fill the lake from the TCA connection point. It has a 4,000 feet wide and up to 640 feet high dam, topping out at 5400 feet, and the lake holds a volume of up to 240,000 acre-ft of water. It would normally hold a minimum volume of 60,000 acre-feet of water to increase the average height difference between the upper and lower dam.

Dam width 4,500′ height 540′ water storage 230,000 acre-ft

Dam 2 dams the Cove Tank dam. It has a 3,300 feet wide and up to 360 feet high dam, topping out at 4,080 feet, and the lake holds a water volume of up to 110,000 acre-ft. Water is pumped from and released to the upper dam via a 13 mile tunnel

Dam width 6,000′ height 380′ water storage 110,000 acre-ft

Dam 3 is the Poppy Canyon Lower Dam. It has a 3,300 feet wide and up to 460 feet high dam, topping out at 4,900 feet, and the lake holds a water volume of up to 70,000 acre-ft. Water is pumped from and released to the upper lake 1.8 mile tunnel.

How much energy will it generate per day? To dam 2 will be releasde 110,000 acre-ft for 5 hrs generating 115 GWh per day or 23 GW of peak power for 5 hrs. Dam 3 will release 70,000 acre-ft for 5 hrs generating 25 GWh per day or 5 GW of peak power for 5 hrs. To again fill dam 2 and 3 will require 17 GW of power from the solar panels. An alternate power would be 9 GW of LFTR power plants, generating 9 GW of alternate peak power when water is released. Most probably the power sources will be a combination of the two.

This pumped storage plant will add another 120% to the existing U.S. pumped storage capacity.

The Transcontinental Aqueduct, spur 14: The Wilson Canyon Solar farm and pumped storage plant.

One of the many problems facing solar farms is that they produce electricity only when the sun shines, which is less than half the time, so for the rest of the time electricity must be provided some other way. Historically peak power demands were provided by pumped storage plant, but very few have been built since the 70’s. Peak power is now supplied by natural gas electric plants, which is for now the most economic solution. If we want to get real about reducing our fossil fuel dependence, pumped storage must be looked at seriously, especially when changing our vehicle fleet from gasoline or diesel fuel to electric power source.

Here is spur 14 proposal sketch

Spur 14 is 100 miles long, starting at 3000′ and ending at 4700′

Dam 1 is the White Oaks Canyon Lake. To fill this lake in a year requires Spur 14 to have a capacity of 120 cfs. It will require 190 GWh to fill the lake from the aqueduct.. It has a 2000 feet wide and up to 480 feet high dam, topping out at 5140 feet, and the lake holds a volume of up to 100,000 acre-ft of water.

Dam 2 dams the Pine Canyon dam. It has a 2,200 feet wide and up to 240 feet high dam, topping out at 5,620 feet, and the lake holds a water volume of up to 60,000 acre-ft. Water is pumped from and released to the White Oaks Canyon lake to the Pine Canyon pumped storage via a 2 mile tunnel.

Dam 3 dams the Sitting Bull Canyon well above the Sitting Bull Falls recreation area. It has a 2,000 feet wide and up to 360 feet high dam, topping out at 5,610 feet, and the lake holds a water volume of up to 40,000 acre-ft. Water is pumped from and released to the White Oaks Canyon lake to the Pine Canyon pumped storage via a 2.4 mile tunnel.

How much energy will it generate per day? Dam 2 will release 60,000 acre-ft for 5 hrs generating 45 GWh per day or 9 GW of peak power for 5 hrs. Dam 3 will release 40,000 acre-ft for 5 hrs generating 28 GWh per day or 5.6 GW of peak power for 5 hrs. To again fill dam 2 and 3 will require 17 GW of power from the solar panels. An alternate power would be 4.5 GW of LFTR power plants, generating 4.5 GW of alternate peak power when water is released.

This pumped storage plant will add another 70% to the U.S. pumped storage capacity.

The Transcontinental aqueduct, Leg 13: From the New Arlington dam to the Colorado River.

This leg will start with a free-flowing Gila River for 30 miles, followed by the painted Rock Reservoir for 20 miles, the Painted Rock Dam.

This picure was taken during high runoff. It is normally dry.

The dam is at elevation 661 feet and runoff starts at 550 feet. Drainage capacity is adequate and maximum storage is 2 million acre-feet. The population of Indians and early settlers are already resettled and compensated. To fill the dam with the 2,500 cfs flow available in phase 1 would take over a year. The reservoir will be used to even out seasonal demand.

After the dam Gila river will be free glowing for 90 miles until it joins the Colorado River in the first pass. In the second pass there will be an aqueduct built with a capacity of 7,100 cfs flow for 100 miles to the

To the Martinez lake it can deliver up to 7,100 cfs. ( The design capacity of the All American canal is 15,155 cfs.) The Martinez lake is puny, and would easily be overwhelmed by surges in the water flow. To accommodate this, the Senator Wash Reservoir will have to be upgraded to be able to pump up or release at least twice as much water as is its present capacity. Lake Martinez is at about 180 feet elevation, and Senator Wash Reservoir is at a maximum elevation of 240 feet.

The Martinez lake and the Senator Wash Reservoir.

The rest of the Transcontinental Aqueduct empties out where the Gila river joins the remainder of the Colorado river a few miles downstream. It will carry on average 2,100 cfs of water to accommodate the needs of Mexico and also provide a modest amount of water to assure the Colorado river again reaches the ocean, maybe restoring some shrimp fishing in the ocean.

The 1944 water treaty with Mexico provides Mexico with 1.5 million acre-ft per year, more or less dependent of drought or surplus. It will be increased only on condition that when the Transcontinental aqueduct is finished, the New River in Mexicali will be cut off at the border, and Mexico will have to do their own complete waste water treatment.

There will be water allocated to the Salton Sea. Proposed will be the world’s largest Lithium mine, mining the deep brine, rich in Lithium. (about a third of the world supply according to one estimate). This requires water, and as a minimum to allow mining in the Salton Sea the water needs to be cleaned. This requires further investigation, but the area around the Salton Sea is maybe the most unhealthy in the United States.

What’s in it for Mexico? Mexico will get sweet , reliable water, much better suited for agriculture..

What’s in it for Arizona? The farming downstream will be better served by reliable sweet water.

What’s in it for California? The All American Canal will get a reliable supply of sweet water.

What’s in it for Lake Mead? The lower Colorado river will get an infusion of about 15,000 cfs, or about 10 MAf, which will allow lake Mead to recover by 8 to 10 MAf per year. This should solve the Colorado River’s water problem until the population served by the Colorado River reaches 60 million people.

The Transcontinental aqueduct Leg 12: From the East Diversion dam to connecting to the Central Arizona aqueduct 45 miles WNW of Phoenix.

Leg 12 of the Transcontinental aqueduct is complicated. The total length of this segment is 105 miles, 20 miles is a 6,200 cfs aqueduct, and 85 miles is the Gila River. This map may help explain it:

But there is a problem that must be solved. Gila River is now mostly dry, and goes through an Indian reservation. The Gila River used to provide about 1.3 Million Acre-ft per year, snow-melt and monsoon rains providing nearly all of it, but was seasonally dry. Now all the water and then some is spoken for, so the Indians get nothing, and without water you can do no farming, so the reserve is largely depopulated. See map:

The home of the Gila River Indian Community The Salt and Gila Rivers flow east to west. Present day dams that divert the Salt River into a series of canals are indicated. Roosevelt Dam was completed in 1911, creating Theodore Roosevelt Lake, and Coolidge Dam was completed in 1930. Important locations include the Casa Grande structure, an artifact of the Hohokam times, and the city of Florence, site of the Florence Canal, which is described in the text. The Gila Indians today live on the Reserve shown, with headquarters at Sacaton. The related Salt River Pima-Maricopa Indians live on a separate reserve on the Salt.

In Phase 1, the Gila River will free flow. In Phase 2 there will be a55 mile aqueduct thru the Indian reserve dimensioned for 10,000 cfs flow. It will provide some power with a drop of over 400 feet. The maps will look like this:

Leg 12 east starts out at 1580′ and ends at Arlington Dam, 795′
Leg 12 west starts at Arlington dam, 705′ and ends at the CAP canal at 1,380′

Total power required for Leg 12 is 160 MW for phase 1 and 320 MW for Phase 2. Since it is continuous it is best served by three 100 MW LFTR reactors.

In Phase 2 the CAP aqueduct will be replaced by one that flows from east to west, and the Mark Wilmer pumping station will be converted to the Mark Wilmer generating station with the same capacity. Electricity generated will be 16% less than the energy that used to be consumed to pump up the water.

Mark Wilmer PP Aerial March 29, 2012 Central Arizona Project photo by Philip A. Fortnam

What is in it for Arizona? The Greater Phoenix area will get an increased water supply from the canal,since Tucson is already served in Leg 11. The Gila Indian reserve will get back the water supply that was taken away from them, a way of reparation, and will again make the Gila Indian reserve a viable community.

The Transcontinental Aqueduct. Leg 11: From San Carlos Lake to East Diversion dam, a distance of about 60 miles.

Stage 11 is a true delivery of water on demand aqueduct. The San Carlos lake has a storage capacity of a million acre-ft, the ideal buffer from the peak power demand driven uphill stages to the major delivery stage. San Carlos lake is now mostly empty, but will be normally filled to 85% of capacity, slightly less in advance of the winter snow melt. The Lake would look like this:

San Carlos lake, about half full

The Coolidge dam is now decommissioned, the lake is too often empty and the dam suffered damage in the power plant and it was no longer economical to produce power. The retrofitted dam will have a power generation capacity of up to 17,000 cfs the top of the dam is at 2535 ft, the typical water level is at 2500 ft and the drop is 215 feet, giving a maximum power output of 275 MW. In the first pass, the maximum output is 8,500 cfs , and the maximum power output is 135 MW.

The Coolidge dam before rebuilding.

From there the stream follows the Gila River to the East diversion dam and connects to the Tucson leg of the CAP canal, and delivers 600 cfs of water. It it then disconnected to the bottom of the canal.

The East Diversion dam will be reinforced, and the anal capacity will be increased to 600 cfs.
The free flowing Gila River with reinforcements around Hayden and the copper mine.

Whats in it for Arizona? Besides having a reliable flow, Gila river will again be good for fishing if stocked and it will deliver 600 cfs of reliable sweet Mississippi and Arkansas river water to the Tucson area. When fully built out it will deliver up to 275 MW of power.

The Transcontinental Aqueduct. Leg 10: The highest pumping station in Arizona to San Carlos Lake, a distance of 93 miles.

The aqueduct stage of this leg is 32 miles and is generating power.The drop is average (4,200 – 3,000 – 32×2.2) = 1,130 feet. The maximum flow is 16,800 cfs. This stage is capable of generating maximum 1.4 GW of power 24 hours a day. Then it drains into Gila River for 47 miles, following 14 miles of San Carlos lake, for a total of 93 miles.

San_Carlos_Lake is located within the 3,000-square-mile (7,800 km2) San Carlos Apache Indian Reservation, and is thus subject to tribal regulations. It has been full only three times, in 1993 it overflowed the spillway and about 35,000 cfs of water caused erosion damage to natural gas pipelines. The lake contained (April 6,2021) less than 100 acre-ft of water. All fish was dead.

When former President Coolidge dedicated the dam in 1930, the dam had not begun to fill. Humorist Will Rogers looked at the grass in the lake bed, and said, “If this were my dam, I’d mow it.”[

When the Transcontinental aqueduct is built the lake will always be nearly filled, level will be at 2510 feet with flood control nearly automatic, it will never overflow, and it will look like this, or better:

The San Carlos lake, when filled will hold 1,000,000 acre-ft of water. Here it is half filled.

The Coolidge dam will have to be retrofitted to accommodate a 17,000 cfs water flow. When water starts flowing at half capacity, 8,400 cfs in phase 1 of the building project it will take 2 months to fill the lake.

What’s in it for Arizona? The San Carlos Lake has been a great disappointment. It is more often empty than even half full, and when it is empty, all fish die. With The Gila river will be rejuvenated and will be able to carry fish again, making it the great recreation spot it was meant to be. In addition it will generate up to 1,4 GW of Power and carry up to 12 Million Acre-ft per year of water to the thirsty American South-west. In the first phase, while the aqueduct is built to full capacity, when the power stations have installed only half capacity, the flow will be 6 MAf per year, and power generated will be up to 700 MW.

Leg 7, leg 8 and leg 9 of the Transcontinental aqueduct. From the Buffalo Soldier Draw dam to the highest point of the aqueduct 10 miles into Arizona.

Leg 7 is 255 miles. I starts out at 2700′ elevation and ends at 4500′

Leg 7. from Buffalo soldier Draw upper dam to the highest point in Texas

To lift 17,000 cfs of water (4500 – 2700 + 255×2.2) = 2421 feet with a 92% efficiency requires 3.7 GW of power.

Leg 8 is 125 miles. I starts out at 4500′ elevation and ends at 3800′

Leg 7. from the highest point in Texas to crossing the Rio Grande at La Mesa

To release 17,000 cfs of water (4500 – 3800 – 125×2.2) = 425 feet with a 92% efficiency generates 550 MW of power.

Leg 8 is 125 miles. I starts out at 4,500′ elevation and ends at 3,800′

From La Mesa it will climb to the highest pumping station in Arizona, located 10 miles west of the border, at 4,200 feet. The total lift of the water in stage 10 is (4,200 – 3980 + 160×2.2) feet = 572 ft. To lift 17,000 cubic feet per second 592 feet requires 900 MW of power.

The total power needed for these 3 legs of the Transcontinental aqueduct when fully built up is 4.05 GW of power, the bulk of which will be supplied of 40 100 MW LFTR (Liquid Fluoride Thorium Reactors). They are efficient and carbon neutral.

What’s in it for Texas, New Mexico and Arizona? Up to 17,000 cfs of soft water is being delivered to the thirsty south western states. This corresponds to 12 Million Acre-feet per year. The Colorado river contributes 15 MAF/year. The water delivery in the first pass of implementing the Transcontinental Aqueduct is 6,000 MAF per year.

The Transcontinental Aqueduct. Leg 11: The highest pumping station in Arizona to San Carlos Lake, a distance of 93 miles.

The aqueduct stage of this leg is 32 miles and is generating power.The drop is average (4,200 – 3,000 – 32×2.2) = 1,130 feet. The maximum flow is 16,800 cfs. This stage is capable of generating maximum 1.4 GW of power 24 hours a day. Then it drains into Gila River for 47 miles, following 14 miles of San Carlos lake, for a total of 93 miles.

San_Carlos_Lake is located within the 3,000-square-mile (7,800 km2) San Carlos Apache Indian Reservation, and is thus subject to tribal regulations. It has been full only three times, in 1993 it overflowed the spillway and about 35,000 cfs of water caused erosion damage to natural gas pipelines. The lake contained (April 6,2021) less than 100 acre-ft of water. All fish was dead.

When former President Coolidge dedicated the dam in 1930, the dam had not begun to fill. Humorist Will Rogers looked at the grass in the lake bed, and said, “If this were my dam, I’d mow it.”[

When the Transcontinental aqueduct is built the lake will always be nearly filled, level will be at 2510 feet with flood control nearly automatic, it will never overflow, and it will look like this, or better:

The San Carlos lake, when filled will hold 1,000,000 acre-ft of water.

The Coolidge dam will have to be retrofitted for a 25,000 cfs water flow

The Coolidge dam will have to be retrofitted for a 17,000 cfs water flow. When water starts flowing at half capacity, 8,400 cfs in phase 1 of the building project it will take 2 months to fill the lake.

What’s in it for Arizona? The San Carlos Lake has been a great disappointment. It is more often empty than even half full, and when it is empty, all fish die. With The Gila river will be rejuvenated and will be able to carry fish again, making it the great recreation spot it was meant to be. In addition it will generate up to 1,4 GW of Power and carry up to 12 Million Acre-ft per year of water to the thirsty American South-west. In the first phase, while the aqueduct is built to full capacity, the flow will be 6 MAf per year.

The Transcontinental Aqueduct. Leg 10: Martin Tank Lake to the highest pumping station in Arizona, a distance of 200 miles.

The Martin Tank Lake dam is 2,260 feet wide and 230 feet high. The Lake will contain about 30,000 Acre-ft when full, about twenty-one hours worth of storage.

The elevation at the Martin Tank lake will top out at 5,220 feet with maximum water level at 5,210 feet. Because there is no water storage en route water will be pumped at all times at The aqueduct will first descend to 3980 feet, as it crosses the Rio Grande in La Mesa, a distance of 50 miles. The elevation difference is (5,120 – 3980 – 50 X 2.2) feet = 1.030 feet. Releasing 16,900 cfs of water 1,030 feet will generate 1.285GW of energy continuously. From La Mesa it will climb to the highest pumping station in Arizona, located 10 miles west of the border, at 4,200 feet. The total lift of the water in stage 10 is (4,200 – 3980 + 160×2.2) feet = 572 ft. To lift 16,900 cubic feet per second 592 feet requires 892 MW of power, for a net electricity generation of 393 MW.

What’s in it for New Mexico and Arizona? Up to 16,900 cfs of soft water is being delivered to the thirsty south western states. This corresponds to 12 Million Acre-feet per year. The Colorado river contributes 15 MAF/year.

The Transcontinental Aqueduct. Leg 10: Martin Tank Lake to Poppy Canyon pumped storage reservoirs, a distance of 200 miles.

The Martin Tank Lake dam is 2,260 feet wide and 230 feet high. The Lake will contain about 30,000 Acre-ft when full, about eighteen hours worth of storage.

The elevation at the Martin Tank lake will top out at 5,220 feet with maximum water level at 5,210 feet. Because there is no water storage en route water will be pumped at all times at The aqueduct will first descend to 3980 feet, as it crosses the Rio Grande in La Mesa, a distance of 50 miles. The elevation difference is (5,120 – 3980 – 50 X 2.2) feet = 1.030 feet. Releasing 16,900 cfs of water 1,030 feet will generate 1.285GW of energy continously. From La Mesa it will climb to the Poppy Canyon Upper Reservoir. The dam is 480 feet high and will top out at 5,400 feet with a maximum water level at 5,490 feet. The total lift of the water in stage 10 is (5,000 – 3980 + 160×2.2) feet = 1196 ft. To lift 16,900 cubic feet per second 1196 feet requires 1,508 MW of power, for a net need of 225 MW. This can be supplied by two 100 MW LFTR nuclear reactors, operating 24 hrs /day The Poppy Canyon Reservoir will look like this:

The Poppy Canyon is a pumped power storage, consisting of an upper dam:

Dam width 4,500′ height 540′ water storage 230,000 acre-ft

and a lower dam:

Dam width 4,500′ height 500′, water storage 200,000 acre-ft

The total lift of the water in the pumping stage is maximum (5,390 – 4,400) feet = 990 ft. and the minimum lift is 200ft, for an average lift of 350 ft. The pumping stage pumps up 10,000 acre-ft per hour for i9 hours needing maximum 10.7 GW of power. During the release stage 38,000 acre-ft of water is released per hour for a total power generation of 78 GWh / day of pumped storage electricity. In addition, the 107 100 MW LFTR SMRs will generate 53.5 GWh of virtual power storage when no water is pumped up.

What’s in it for New Mexico and Arizona? 16,900 cfs of soft water is being delivered to be divided among the south western states. In addition this stage will provide up to 133.5 GWh of pumped storage peak energy daily to help stabilize the grid when more solar power panels are installed and electric cats and trucks are recharged.