Why Thorium? 9. Thorium based nuclear power is not suited for making nuclear bombs.

 Thorium based Nuclear Power does not produce much Plutonium-239, which is the preferred material used in nuclear bombs. The higher Plutonium isotopes and other TRansUraniums are about as nasty as they get, need expensive protection against terror attacks, and need to be stored for a very long time.

One anecdote from my youth. The time had come to apply to University, and to my delight I was accepted to Chalmers’ University in Sweden as a Technical Physics major. I felt, maybe I can do my part by becoming a Nuclear Engineer and help solve the energy needs of the future. The Swedes at that time championed the heavy water – natural Uranium program together with the Canadians and to some extent with the Indians. Sweden was and to some extent still is a non-aligned country, so it was not privy to any nuclear secrets, it had to go it alone. They settled on the heavy water moderated natural Uranium process because Sweden had an ambition to produce its own nuclear bomb. Officially this was never talked about, and I was not aware of it at that time. They could have gone with Thorium instead, but a Thorium based nuclear reactor  produces very little Plutonium, and what it produces is nearly all Pplutonium-238, not fissile and as such not suitable for bomb making.

I was excited to learn about all the possibilities and signed up for a couple of nuclear classes. One lab was to design a safety circuit, then run the heavy water research reactor critical and hopefully watch the reactor shut down from the safety circuit before the system safety circuit shutdown. About that time the word came that U.S. will sell partially enriched uranium at bargain basement prices if Sweden agreed to abandon the heavy water project and sign the nuclear non-proliferation treaty, a treaty being formulated by U.N.

Sweden was in awe about U.N, all the problems of the world were to be solved through it, and it had such a capable General Secretary in Dag Hammarskjöld, a Swede. I looked at the light water, partially enriched Uranium nuclear power plants being developed and decided to have no part with it, not due to safety concerns but it was the design that produced the most nuclear waste of any of the available designs. At that time there was still optimism that fusion would be ready by about the year 2010 or so. The cost of maintaining spent fuel in perpetuity was never considered, so light water reactors became the low cost solution.

India on the other hand refused to join the nuclear non-proliferation treaty, kept their heavy water program going and had by 1974 produced enough plutonium for one nuclear bomb, which they promptly detonated. They still use heavy water moderated reactors, but since India is low on Uranium but rich in Thorium they have now converted one heavy water reactor to Thorium with a Plutonium glow plug. It went on-line in 2011.

They are also developing molten salt Thorium reactors, but full production is still a few years off.

There we have it. We could have gone with Thorium from the beginning, but the cold war was on, and the civilian peaceful use of nuclear energy was still all paid for by nuclear weapons research and development. Once all the bombs we could ever wish for were developed the greatest asset of nuclear power became its greatest liability.

Why Thorium? 8. Radioactive waste from a Liquid Fluoride Thorium Reactor decays down to background radiation in 300 years compared to a million years for U-235 based reactors. A Limerick.

The nuclear waste meant for Yucca

would destine Nevada the sucka

But with Thorium we rid

us of waste that is hid

No need for that waste to be trucka!

Radioactive waste from an LFTR (Liquid Fluoride Thorium Reactor)  decays down to background radiation in 300 years instead of a million years for U-235 based reactors. Initially LFTRs produce as much radioactivity as an U-235 based nuclear reactor, since fission converts mass to heat, but the decay products have a much shorter half-life. See the figure below.

Where is the storage for spent nuclear fuel and other nuclear waste now? Look at the map, it is scary.

And these are just the U.S. installations!

Many years ago I studied Engineering at Chalmers’ University in Sweden and I thought I would become a nuclear engineer. Sweden had at that time a peaceful heavy water based nuclear power program together with Canada and India. The advantage with heavy water as moderator is that it can use natural, un-enriched Uranium. One of the end products is of course Plutonium 239, the preferred material to make nuclear bombs, but it could also use Thorium, and the end product is then mostly Plutonium 238, used in space exploration, and we were dreaming big. One of the advantages of Thorium as fuel is that it produces about 0,01%  of trans-Uranium waste compared to Uranium as fuel. About that time the U.S. proposed we should abandon the heavy water program and switch to light water enriched Uranium based nuclear power. They would sell the enriched Uranium, and reprocess the spent fuel at cost. They also had the ideal final resting place for the radioactive waste products in Nevada. This was an offer the Swedish government could not refuse, at the height of the cold war. This was  in the 1960’s! India on the other hand did refuse, and they eventually got the nuclear bomb. Since that meant Sweden was never going to use Thorium as nuclear fuel, and I could not figure out how to get rid of all the radioactive waste products, I switched my attention back to control engineering.

.What did President Trump mean with innovative approaches?

Is this where Thorium comes in!? Thorium solves many problems with nuclear energy. Meanwhile the Biden administration and Congress keep hoarding nuclear waste in local storages.

Why Thorium? 7. Thorium nuclear power is the only realistic solution to power space colonies.

Thorium nuclear power is the only realistic solution to power space colonies. To form space colonies, power has to be provided to sustain the colony. This means that Liquid Fluoride Thorium Reactors  (LFTR) have to be fully developed and operational here on earth before serious space colony development can even begin. It need to get started in earnest NOW!

Kirk Sorensen has provided an intriguing teaser on the case for Thorium nuclear energy.

Watch it and enjoy!

Why Thorium? 6. Thorium based nuclear power will produce Plutonium-238, needed for space exploration.

A Thorium based nuclear power generator produces Pu-238 as one of the final TRansUranium products, which is in short supply and much in demand for space exploration nuclear power.

NASA relies on pu-238 to power long-lasting spacecraft batteries that transform heat into electricity. With foreign and domestic supplies dwindling, NASA officials are worried the shortage will prevent the agency from sending spacecraft to the outer planets and other destinations where sunlight is scarce. Thorium reactors produce PU-238 as a “free” byproduct.  In 2009 Congress denied a request to produce more Pu-238 by traditional means, instead relying on Russia to sell us the plutonium. (Remember the Russian reset?) Russia made their last delivery in 2010. PU-238 production has since been restarted by converting Ne-237 to Pu-238 at a cost of over 8 million dollars per kilogram. The Ceres-Dawn spacecraft used over 22 Kg of Pu-238 as electricity generator.

To get the best efficiency of generating Pu-238 out of a molten salt Liquid Fluoride Thorium Reactor, the excess U-233 and TRansUranium products have to be extracted continuously while the reactor is running, and this technology is not yet implemented, but is necessary to implement before we can also have Thorium power on the moon, and Thorium Power is the only viable solution if we are ever going to have a moon colony, so we should rapidly develop the technology privately and with the cooperation of the Space Force and NASA.

Why Thorium? 4. Thorium is much less radioactive than Uranium and should not be considered ‘Source Material’ at the same level as Uranium.

What is Source Material according to NRC?

Uranium or thorium, or any combination thereof, in any physical or chemical form, or ores that contain, by weight, one-twentieth of one percent (0.05 percent) or more of (1) uranium, (2) thorium, or (3) any combination thereof. Source material does not include special nuclear material. For additional detail, see Source Material.

Thorium 232 has a half life of 14 billion years, about the same as the generally accepted age of the universe until the dell telescope discovered much more than was known

Uranium 238 has a half life of 4.5 billion years and Uranium 235 has a half life of 700 million years.

In addition Uranium has as its first transition Thorium generation on its path down to the final stable state, Lead. This means that Uranium is at least four times as radioactive as Thorium.

It is interesting to observe that in the decay path of both Uranium and Thorium they pass through Radon and emit two alpha particles on the way.

The definition for Source material should therefore be changed to:

Uranium or thorium, or any combination thereof, in any physical or chemical form, or ores that contain, by weight, one-twentieth of one percent (0.05 percent) or more of (1) uranium, 0.2 percent of (2) thorium, or (3) any proportional combination thereof.

Why is this important? The U.S. used to be world leader in rare earth metals production. Then when the regulation on Source Material was instituted, mining rare earth metals with a small amount of Thorium became unprofitable and China took over, and developed a near monopoly on the market, in effect making rare earth metals single sourced. Rare earth metals, as well as Thorium is of great strategic value.

Here is an example:

This is the Mount Weld Rare Earth Mine in Western Australia. It is owned by Lynas Corporation. The mined ore, after concentration is shipped to Malaysia for final refining. The concentrated ore contains 30% rare earth metals ready for separation, but the ore also contains 0.16% Thorium. For the moment, only the most sought after rare earth metals are refined, the rest are left on the slag heap, which includes Thorium. This makes it nuclear waste according to a multitude of protestors, after all it is source material. To complicate matters further, China is looking to grab the mine, so they stir up as much trouble as possible

Why Thorium? 3. The best way to produce clean energy. Pass SB 4242.

This is insanity. In 2011 the Oak Ridge Laboratories had a stockpile of 1400 kg U 233. They have been busy downblending it into depleted uranium to render it useless, and there is now only about 450 kg left. Unless this insanity is stopped asap Thorium nuclear power will be set back immensely, since U233 is used as the startplug for the cleanest Thorium nuclear power production

The bill is introduced. It should be immediately passed in the Senate, and be passed in the house without amendments. Any delay is critical. It is that important. We gave the technology to the Chinese so they can build up their naval fleet with molten salt Thorium nuclear power. Meanwhile we still have some u-233 left, worth billions as a National Security asset. At the very least, we must stop downblending immediately, even before the bill is passed.

Here is the bill itself.

Status

Spectrum: Partisan Bill (Republican 2-0)
Status: Introduced on May 18 2022 – 25% progression, died in committee
Action: 2022-05-18 – Read twice and referred to the Committee on Energy and Natural Resources.
Pending: Senate Energy And Natural Resources Committee
Text: Latest bill text (Introduced) [PDF]

Summary

A bill to provide for the preservation and storage of uranium-233 to foster development of thorium molten-salt reactors, and for other purposes.
Tracking Information

Register now for our free OneVote public service or GAITS Pro trial account and you can begin tracking this and other legislation, all driven by the real-time data of the LegiScan API. Providing tools allowing you to research pending legislation, stay informed with email alerts, content feeds, and share dynamic reports. Use our new PolitiCorps to join with friends and collegaues to monitor & discuss bills through the process.

Monitor Legislation or view this same bill number from multiple sessions or take advantage of our national legislative search.

Title

Thorium Energy Security Act of 2022

Sponsors

Sen. Tommy Tuberville [R-AL]Sen. Roger Marshall [R-KS]

History

DateChamberAction
2022-05-18SenateRead twice and referred to the Committee on Energy and Natural Resources.

Subjects

Energy

US Congress State Sources

TypeSource
Summaryhttps://www.congress.gov/bill/117th-congress/senate-bill/4242/all-info
Texthttps://www.congress.gov/117/bills/s4242/BILLS-117s4242is.pdf
117th CONGRESS
2d Session

S. 4242

To provide for the preservation and storage of uranium-233 to foster development of thorium molten-salt reactors, and for other purposes.


IN THE SENATE OF THE UNITED STATES

May 18 (legislative day, May 17), 2022

Mr. Tuberville (for himself and Mr. Marshall) introduced the following bill; which was read twice and referred to the Committee on Energy and Natural Resources


A BILL

To provide for the preservation and storage of uranium-233 to foster development of thorium molten-salt reactors, and for other purposes.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled,

SECTION 1. Short title.

This Act may be cited as the “Thorium Energy Security Act of 2022”.

SEC. 2. Findings.

Congress makes the following findings:

(1) Thorium molten-salt reactor technology was originally developed in the United States, primarily at the Oak Ridge National Laboratory in the State of Tennessee under the Molten-Salt Reactor Program.

(2) Before the cancellation of that program in 1976, the technology developed at the Oak Ridge National Laboratory was moving steadily toward efficient utilization of the natural thorium energy resource, which exists in substantial amounts in many parts of the United States, and requires no isotopic enrichment.

(3) The People’s Republic of China is known to be pursuing the development of molten-salt reactor technology based on a thorium fuel cycle.

(4) Thorium itself is not fissile, but fertile, and requires fissile material to begin a nuclear chain reaction. This largely accounts for its exclusion for nuclear weapons developments.

(5) Uranium-233, derived from neutron absorption by natural thorium, is the ideal candidate for the fissile material to start a thorium reactor, and is the only fissile material candidate that can minimize the production of long-lived transuranic elements like plutonium, which have proven a great challenge to the management of existing spent nuclear fuel.

(6) Geologic disposal of spent nuclear fuel from conventional nuclear reactors continues to pose severe political and technical challenges, and costs United States taxpayers more than $500,000,000 annually in court-mandated payments to electrical utilities operating nuclear reactors.

(7) The United States possesses the largest known inventory of separated uranium-233 in the world, aggregated at the Oak Ridge National Laboratory.

(8) Oak Ridge National Laboratory building 3019 was designated in 1962 as the national repository for uranium-233 storage, and its inventory eventually grew to about 450 kilograms of separated uranium-233, along with approximately 1,000 kilograms of mixed fissile uranium from the Consolidated Edison Uranium Solidification Program (commonly referred to as “CEUSP”), divided into approximately 1,100 containers.

(9) The Defense Nuclear Facilities Safety Board issued Recommendation 97–1 (relating to safe storage of uranium-233) in 1997 because of the possibility of corrosion or other degradation around the storage of uranium-233 in a building that was built in 1943.

(10) In response, the Department of Energy published Decision Memorandum No. 2 in 2001 concluding that no Department of Energy programs needed uranium-233 and directed that a contract be placed for disposition of the uranium-233 inventory and decommissioning of its storage facility.

(11) The Department of Energy awarded a contract for the irreversible downblending of uranium-233 with uranium-238 and its geologic disposal in Nevada, which downblending would create a waste form that would pose radiological hazards for hundreds of thousands of years, rather than to consider uranium-233 as a useful national asset.

(12) All 1,000 kilograms of CEUSP uranium-233-based material have been dispositioned (but not downblended) but those containers had little useful uranium-233 in them. The majority of separated and valuable uranium-233 remains uncontaminated by uranium-238 and suitable for thorium fuel cycle research and development. That remaining inventory constitutes the largest supply of uranium-233 known to exist in the world today.

(13) The United States has significant domestic reserves of thorium in accessible high-grade deposits, which can provide thousands of years of clean energy if used efficiently in a liquid-fluoride reactor initially started with uranium-233.

(14) Recently (as of the date of the enactment of this Act), the Department of Energy has chosen to fund a series of advanced reactors that are all dependent on initial inventories and regular resupplies of high-assay, low-enriched uranium.

(15) There is no domestic source of high-assay, low-enriched uranium fuel, and there are no available estimates as to how long the development of a domestic supply of that fuel would take or how expensive such development would be.

(16) The only viable source of high-assay, low-enriched uranium fuel is through continuous import from sources in the Russian Federation.

(17) The political situation with the Russian Federation as of the date of the enactment of this Act is sufficiently uncertain that it would be unwise for United States-funded advanced reactor development to rely on high-assay, low-enriched uranium since the Russian Federation would be the primary source and can be expected to undercut any future United States production, resulting in a dependency on high-assay, low-enriched uranium from the Russian Federation.

(18) The United States has abandoned the development of a geologic repository at Yucca Mountain and is seeking a consenting community to allow interim storage of spent nuclear fuel, but valid concerns persist that an interim storage facility will become a permanent storage facility.

(19) Without a closed fuel cycle, high-assay, low-enriched uranium-fueled reactors inevitably will produce long-lived wastes that presently have no disposition pathway.

(20) The United States possesses enough uranium-233 to support further research and development as well as fuel the startup of several thorium reactors. Thorium reactors do not require additional fuel or high-assay, low-enriched uranium from the Russian Federation.

(21) Continuing the irreversible destruction of uranium-233 precludes privately funded development of the thorium fuel cycle, which would have long term national and economic security implications.

SEC. 3. Sense of Congress.

It is the sense of Congress that—

(1) it is in the best economic and national security interests of the United States to resume development of thorium molten-salt reactors that can minimize long-lived waste production, in consideration of—

(A) the pursuit by the People’s Republic of China of thorium molten-salt reactors and associated cooperative research agreements with United States national laboratories; and

(B) the present impasse around the geological disposal of nuclear waste;

(2) that the development of thorium molten-salt reactors is consistent with section 1261 of the John S. McCain National Defense Authorization Act for Fiscal Year 2019 (Public Law 115–232; 132 Stat. 2060), which declared long-term strategic competition with the People’s Republic of China as “a principal priority for the United States”; and

(3) to resume such development, it is necessary to relocate as much of the uranium-233 remaining at Oak Ridge National Laboratory as possible to new secure storage.

SEC. 4. Definitions.

In this Act:

(1) CONGRESSIONAL DEFENSE COMMITTEES.—The term “congressional defense committees” has the meaning given that term in section 101(a) of title 10, United States Code.

(2) DOWNBLEND.—The term “downblend” means the process of adding a chemically identical isotope to an inventory of fissile material in order to degrade its nuclear value.

(3) FISSILE MATERIAL.—The term “fissile material” refers to uranium-233, uranium-235, plutonium-239, or plutonium-241.

(4) HIGH-ASSAY, LOW-ENRICHED URANIUM.—The term “high-assay, low-enriched uranium” (commonly referred to as “HALEU”) means a mixture of uranium isotopes very nearly but not equaling or exceeding 20 percent of the isotope uranium-235.

(5) TRANSURANIC ELEMENT.—The term “transuranic element” means an element with an atomic number greater than the atomic number of uranium (92), such as neptunium, plutonium, americium, or curium.

SEC. 5. Preservation of uranium-233 to foster development of thorium molten-salt reactors.

The Secretary of Energy shall preserve uranium-233 inventories that have not been contaminated with uranium-238, with the goal of fostering development of thorium molten-salt reactors by United States industry.

SEC. 6. Storage of uranium-233.

(a) Report on long-Term storage of uranium-233.—Not later than 120 days after the date of the enactment of this Act, the Secretary of Energy, in consultation with the heads of other relevant agencies, shall submit to Congress a report identifying a suitable location for, or a location that can be modified for, secure long-term storage of uranium-233.

(b) Report on interim storage of uranium-233.—Not later than 120 days after the date of the enactment of this Act, the Chief of Engineers shall submit to Congress a report identifying a suitable location for secure interim storage of uranium-233.

(c) Report on construction of uranium-233 storage facility at Redstone Arsenal.—Not later than 240 days after the date of the enactment of this Act, the Chief of Engineers shall submit to Congress a report on the costs of constructing a permanent, secure storage facility for uranium-233 at Redstone Arsenal, Alabama, that is also suitable for chemical processing of uranium-233 pursuant to a public-private partnership with thorium reactor developers.

(d) Funding.—Notwithstanding any other provision of law, amounts authorized to be appropriated or otherwise made available for the U233 Disposition Program for fiscal year 2022 or 2023 shall be made available for the transfer of the inventory of uranium-233 to the interim or permanent storage facilities identified under this section.

SEC. 7. Interagency cooperation on preservation and transfer of uranium-233.

The Secretary of Energy, the Secretary of the Army (including the head of the Army Reactor Office), the Secretary of Transportation, the Tennessee Valley Authority, and other relevant agencies shall—

(1) work together to preserve uranium-233 inventories and expedite transfers of uranium-233 to interim and permanent storage facilities; and

(2) in expediting such transfers, seek the assistance of appropriate industrial entities.

SEC. 8. Report on use of thorium reactors by People’s Republic of China.

Not later than 180 days after the date of the enactment of this Act, the Comptroller General of the United States, in consultation with the Secretary of State, the Secretary of Defense, and the Administrator for Nuclear Security, shall submit to Congress a report that—

(1) evaluates the progress the People’s Republic of China has made in the development of thorium-based reactors;

(2) describes the extent to which that progress was based on United States technology;

(3) details the actions the Department of Energy took in transferring uranium-233 technology to the People’s Republic of China; and

(4) assesses the likelihood that the People’s Republic of China may employ thorium reactors in its future navy plans.

SEC. 9. Report on medical market for isotopes of uranium-233.

Not later than 180 days after the date of the enactment of this Act, the Director of the Congressional Budget Office, after consultation with institutions of higher education and private industry conducting medical research and the public, shall submit to Congress a report that estimates the medical market value, during the 10-year period after the date of the enactment of this Act, of actinium, bismuth, and other grandchildren isotopes of uranium-233 that can be harvested without downblending and destroying the uranium-233 source material.

SEC. 10. Report on costs to United States nuclear enterprise.

Not later than 180 days after the date of the enactment of this Act, the Director of the Congressional Budget Office, after consultation with relevant industry groups and nuclear regulatory agencies, shall submit to Congress a report that estimates, for the 10-year period after the date of the enactment of this Act, the costs to the United States nuclear enterprise with respect to—

(1) disposition of uranium-233;

(2) payments to nuclear facilities to store nuclear waste; and

(3) restarting the manufacturing the United States of high-assay, low-enriched uranium.

Why Thorium? 2. Thorium is already mined for rare earth metals, just needs to be refined.

Thorium is a by-product of mining heavy metals and rare earth metals. The price is the cost of extracting and refining, which can be as low as $40/Kg. No extra mining is required for extracting the Thorium, and we all know that mining is a major source of pollution.

The first thing we must realize is that rare earth metals are not all that rare. They are a thousand times or more abundant than gold or platinum in the earth crust and easy to mine, but more difficult to refine. Thorium and Uranium will  be mined together with rare earth metals.

Related image

U.S. used to be the major supplier for rare earth metals, which was fine up to around 1984. Then the U.S. regulators determined that Uranium and Thorium contained in the ore made the ore radioactive, so they decided to make rare metal ore a “source material” with all what that meant for record keeping and control. This made mining in the U.S. unprofitable so in 2001 the last mine closed down. China had no scruples, such as human and environmental concerns, so they took over the rare earth metals mining and in 2010 controlled over 95% of the world supply, which was in line with their long term plan of controlling the world by 2025. Luckily this has now been rectified with U.S. and Australian mines reopened, but the U.S. mined ore is still shipped to China for refining. However, in July 2019, President Trump activated Section 303 of the Defense Production Act to declare domestic production capability for rare earth elements and other critical minerals “essential to the national defense.” Domestic refining was scheduled to begin late 2020. It has since then been delayed until 2022. I do not know if refining has started as of May 2023, and if Thorium is included in the reining process. In the mean time the ore, including Thorium was shipped to China for refining. The Mountain Pass mine is quite impressive:

By Tmy350 – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=115261745

Rare Earth Element Production

So, why is this important? Just take a look at all the uses for rare earth metals. The most sought after pays all the cost of mining and refining, and the rest are readily available at nominal cost.

The Chinese almost got away with it, and that was but one reason the trade negotiations were so complicated and hard fought, but necessary. Donald Trump fought for reciprocity and fair competition. Since the onset of the COVID -19 pandemic, originating in Wuhan, China, it has become more and more obvious that China can no longer be allowed to be single source supplier of anything.

Why Thorium? 1. Only Thorium can supply the worlds electric energy needs until the next millennium, or at least until fusion power finally is solved.

We live in challenging times with enormous environmental challenges. It takes a lot of energy to clean up the pollution we have generated over the ages. It would be a shame to use up our remaining coal, oil and gas to produce the electricity needed to clean up. Oil coal and gas will eventually be depleted and we need to save as much as possible for future generations, so they can enjoy flying, to which we have become accustomed. It would be a shame to convert the remaining fossil fuel to CO2 for electricity production, it is far too valuable a resource in limited supply. Like the famous conservationist Sarah Palin once said: “for when it’s gone, it’s gone.”

The need to develop a Thorium based molten salt fast breeder nuclear reactor to develop our energy needs for the future can not be overstated. Lest anyone should be threatened by the words fast breeder, it simply means it uses fast neutrons instead of thermal neutrons, and breeder means it produces more fissile material than it consumes, in the case of Thorium the ratio is about 1.05. In 2007 the world’s energy consumption was around 500 quads (Quadrillion BTUs). It is scheduled to be 700 Quads by 2935

Thee are 18,800 quads of Coal left, enough for 90 years consumption at 2035 levels

Thee are 35,000 quads of natural gas left, enough for 200 years consumption at 2035 levels

Thee are 8,400 quads of oil left, enough for 36 years consumption at 2035 levels.

Thee are 1,900 quads of Uranium left, enough for 38 years consumption at 2035 levels. The efficiency of using all the Uranium could be increased by a factor of 200 in fast breeder reactors, but in the U.S they are still experimental, but a couple exist in Russia. Alone in the world the U.S has already used up 78% of the reserves, and the fact that they sold 20% of the remaining ore to Russia does not help.

Renewables are forever, but they cannot exceed more than about 20% of the totel energy need until the battery storage problem is solved for when the wind doesn’t blow an the sun doesn’t shine.

Fusion does exist, and when solved will solve our energy problem forever, but the energy production solution is still 20 years away. as they were 60 years ago. Right now they exist as neutron producers.

Which leaves us Thorium. The world supply is about 6,355,000 tons of easily obtainable Thorium supplies or about 700 years of supply, if Thorium supplied all our energy, 2200 years if Thorium supplied all our electricity and 20% is supplied by renewable energy.

There are of course the sustainable energy sources such as wind, solar, hydroelectric, biomass, geothermal, tidal and wave energy, and they should be pursued where economically and environmentally appropriate. These are separate but important subjects.

Climate change is far more sensitive to changing levels of water vapor, clouds and ice than rising CO2 and Methane. Let us tackle climate change right!

The rain that on the righteous falls,

falls also on that other fella

but mostly on the just, because

the unjust stole the just’s umbrella.

(author unknown).

If you live in the higher latitudes, rain is a nuisance, and as they say in England: Everybody complains about the weather, but nobody does anything about it. In areas of drought, rain is a blessing. The quip ‘poem’ refers to the Bible (of course) and can be found in Matthew 5:43-45. Jesus says in the sermon on the mount:

43 “You have heard that it was said, ‘You shall love your neighbor and hate your enemy.’ 44 But I say to you, love your enemies, bless those who curse you, do good to those who hate you, and pray for those who spitefully use you and persecute you, 45 that you may be sons of your Father who is in heaven. For He makes His sun rise on the evil and on the good and sends rain on the just and on the unjust. (Modern English Version).

It all goes back to the beginning: The Bible says in Genesis 1:

 In the beginning God created the heavens and the earth. The earth was formless and void, darkness was over the surface of the deep, and the Spirit of God was moving over the surface of the water.

God said, “Let there be light,” and there was light. God saw that the light was good, …..

So the evening and the morning were the first day.

Then God said, “Let there be an expanse in the midst of the waters, and let it separate the waters from the waters.” So God made the expanse and separated the waters which were under the expanse from the waters which were above the expanse. And it was so. God called the expanse Heaven. So the evening and the morning were the second day.

Day 3,4,5 and 6 God created Sun, Moon and stars, flora and fauna all after its kind, and at the end of each day God saw that it was good. But God didn’t say it was good after day two!

At the end of day six 26 Then God said, “Let us make man in our image, after our likeness, and let them have dominion over the fish of the sea, and over the birds of the air, and over the livestock, and over all the earth, and over every creeping thing that creeps on the earth.”

27 So God created man in His own image;
    in the image of God He created him;
    male and female He created them.

After God had created man in His own image, one kind, two equivalent sexes, male and female, the ecosystem that was started in day 2 was complete, including man and woman; God could finally say: It was very good. God gave us the stewardship of earth, and it is our responsibility not to destroy God’s creation.

There is now great anxiety that we will exceed the all important 1.5 degree Celsius temperature increase since pre-industrial times soon, since we are about to have another el niño. A direct quote in Jan 2019 from scaremonger congresswoman Alexandra Ocasio-Cortez states: ‘The world is going to end in 12 years if we don’t address climate change,‘ Her ‘solution’ is to follow the climate alarmists and do away with all fossil fuel in the next 8 years or sooner. As if that would solve anything.

There is a better solution. CO2 is our strongest greenhouse gas, next after water vapor, which is between 5 and 10 times stronger. In fact water vapor is a condensing gas and exists in the atmosphere as unsaturated, oversaturated, as water drops and as ice crystals. The critical thing about precipitation as rain or snow is that it is increasing in areas that already get enough, and is decreasing in areas of insufficient rain or snow. Since 1901, global annual precipitation has increased at an average rate of 0.04 inches per decade, while precipitation in the contiguous 48 states has increased at a rate of 0.20 inches per decade. The eastern parts of the United States have experienced greater increases in precipitation, while the American southwest has experienced a decrease. For example, the Colorado river basin has experienced an annual precipitation decline of 0.6 inches per decade, see fig.

Looking at all of the contiguous 48 states, the precipitation figure looks like this:

In the East it is all about water responsibilities, you must build a catch basin to catch the water that falls on roads and roofs and other paved surfaces, and release it slowly to lessen floods. In the West it is the other way around, it is all about water rights. If you don’t own the water rights on your property you are not even allowed to water the plants outside with the water that falls on the roof of your own house, even though thatt would benefit the aquifer. In fact, one of the most effective way to destroy the environment is to deplete the aquifers. The situation for the aquifers in the world is already dire. Nearly all big cities in the 10-40 latitudes zone that are not fed by major rivers are already depleting their aquifers at an alarming rate. Mexico City e.g. have exhausted their aquifers and are looking for more water supplies. In addition the lakes are disappearing. Salt Lake is a third of what it was in 1970,The Aral Sea is but a memory, rivers are being dammed so much that even the Euphrates river was running dry last fall, the list goes on. This must be solved.

This is a proposal. As in the east, let the water rights belong to the property and cannot be sold separately. This way the water can be stored where it will do most good, at the source. With this comes water responsibility. The landowner is responsible for maintaining the aquifer, and keep it replenished at all times. In times of drought, the aquifers can be temporarily drawn down if there is no water available to purchase at market value. This requires a water exchange market, complete with futures. (This is much more important than a Carbon exchange market). When the drought is over the aquifers must be refilled over time. The West is mostly federal land, except for Indian reservations, see map:

The Indian reservations will be given back the water rights they had before it was taken from them, which was the water that rained on their land. In addition they will be given back the right to use the water from the rivers up to the point of reason, that is what was used before settlers came and took the water rights. They will get the river water free, that will be their reparations, everyone else will have to pay market price for river water. (In the east, the rivers will have excess water, so the price will be zero. and the price for cleaning the water will be paid by the consumer). In the American Southwest, water is the most valuable resource, so water should be priced in an open market.

But how does all of this affect climate change?

The American Southwest is becoming desertified. That means it is slowly made a desert. The aquifers are being depleted and rain is diminishing. This leads to less clouds and even less rain. The worst example is the disappearance of the Aral Sea. Central government (of CSSR) thought it was a good idea to grow cotton and irrigate the land. After a few years of great harvests the rivers dried up, the lake almost disappeared, the clouds disappeared and the rains stopped. This was done in the 70’s and a million people had to be resettled to where there still was water.

The solution is to change the land use to produce more clouds and more rain and snow. To collect the water in lakes, dams and rivers leads to more evaporation, but not more clouds and rain. Only well restored aquifers will solve the problem, together with replanting indigenous trees and other vegetation. For example Pine trees emit ideal aerosols for cloud generation when water vapor becomes oversaturated thanks to evapotranspiration from the same trees. The aquifers must be sufficiently refilled to sustain trees. The trees makes the soil cooler, so unwanted evaporation will be less. The same forests must be well maintained to avoid large wildfires.

Since the American Southwest is drying up, more water must be provided, especially since 40 million people are already dependent on the water from the Colorado River, and the West is growing rapidly. Here is the solution to the water problem in the American Southwest: https://lenbilen.com/2022/02/13/the-best-new-green-deal-ever-save-the-american-south-west-and-make-it-green-this-is-how/

It is expensive, but much cheaper than trying to solve climate change by mining up the whole world trying to find enough Lithium, Cobalt and rare earth metals for all the electric cars, trucks and batteries to store the energy needed when the sun doesn’t shine and the wind doesn’t blow. A hint: Use Thorium to replace coal for electricity production, It is already mined when mining rare earth metals. There are many reasons to produce Thorium Nuclear Power. Here are 30 of them

I leave you with the ballad of Ira Hayes as performed by Johnny Cash

Of the recorded temperature increase between 1980 and 2022, how much is attributable to CO2, and how much to other greenhouse gases?

By far, the strongest greenhouse gas is water vapor, not because it is very strong of itself, but it absorbs nearly all outgoing energy in the infrared spectrum except in the so called atmospheric window, where it only partially absorbs. Yet water vapor is missing from the IPCC AR6 chart seen here:

IPCC has consistently treated the effect of greenhouse gasses as additive, but it is impossible to absorb more than 100% of all emitted energy for a given wavelength. This leads to an overestimation of absorption when 2 or more gasses are present. For example, if CO2 absorbs 90% of available energy at 13 μm and water vapor another 50%, the sum is 90% + (1 -0.9} * 0.5 = 95%, not 140%

This will change the relative importance of greenhouse gasses drastically so it must be tested against reality. We now have a good global satellite temperature record from 1980 to 2022 or 43 years:

During this time the temperature rise was 0.5 C, which translates to 2.375 W/m2 ERF

Water vapor.

This is a good chart to see the relative importance of all major greenhouse gasses:

It is to be noted that water vapor also absorbs the incoming solar radiation in certain wavelengths, but solar influx is assumed to be constant.

When average temperature rises 0.5 C, the possible absorption rises by 2.375 W/m2 minus the energy that escapes through the atmospheric window.Water vapor through saturation: is responsible for all of this increase except where other gasses also absorb in the atmospheric window, and in the atmospheric window the absorption must be proportionally shared, subject to the 100% absorption limitation.The atmospheric window is about 26% of all the emitted radiation so net water absorption is 0.74 * 2.375 = 1.6 W.m2 or 0.34 C. However, the relative humidity is also decreasing, see picture:

Between 1980 and 2022 the net humidity increase is 3.6% minus 0.75% relative humidity for a net increase of 3.54%. This increase only matters in the atmospheric window which is on average 25% saturated, so the total increase from water vapor increase is 0.26 * 2.375 * 0.25 * 0.9925 = 0.15 W/m2 or 0.03 C., to be added to the total before increase in humidity.This means that for a 0.5C temperature increase between 1980 and 2022 the total sensitivity to water vapor is 1.75 W/m2 or 0.37 C

Carbon dioxide

CO2 is the strongest greenhouse gas after water vapor. The only wavelength band that is meaningful is 13 to 17.4 μm and absorption occurs from both CO2 and water vapor. Since they exist together, the effect of each of them must be proportionally allocated, or the sum of them added would exceed 100%

Between 1980 and 2022 the CO2 levels rose from 335 ppm to 415 ppm or 24% increase. The temperature increase 0.5 C. The net temperature increase or ERF in the 13 to 17.4 μm band is 0.035C or +0.17 W/m2 for the water vapor and 0.04C or +0.19 W/m2 for the CO2. To see how the calculation was made, go to Appendix 1.

Methane.

Methane gas is created from a variety of sources, both man made and natural. See pie chart

The good thing about methane is that its lifetime in the atmosphere is only 10 to 15 years, and the real contribution to climate change is only 1/5th of what is commonly advertised, since iits absorption bands occur together with partly saturated absorption from water vapor. See appendix 2.

In 1980 the CH4 concentration was 1.6 ppm and will be 2.0 ppm in 2022 which results in an increase of the greenhouse effect of 0.035 C or 0.17 W/m2 ERF from rising levels of Methane since 1980.

N2O.

Atmospheric N2O levels averaged 336 ppb (parts per billion) during 2022, about and was 301 ppb in 1980. It is a 300 times stronger greenhouse gas than CO2 by itself, because its absorption is not saturated in the atmosphere. When water vapor is dominant it is diminished by over 70% since it is at the edges of the Atmospheric window. For calculations see Appendix 3.

In 1980 the N2O concentration was 0.3 ppm which results in an increase of the greenhouse effect of 0.0065 C or 0.031 W/m2 ERF from rising levels of N2O since 1980 .

Ozone.

Ozone occurs as stratospheric O3 which is good. It protects us from uv radiation. O3 in the troposphere is considered harmful if it is over 0.08% It is normally around 0,01% in the troposphere. For calculations and figures, see appendix 4.

When the earth’s temperature rises by 0.5C, from 1980 to 2022, the amount of tropospheric O3 probably rises by 2% (Lacking good data I am guessing wildly, in urban areas it may be much more, but this is global average). This comes to 0.0034C temperature increase or 0.016 W/m2 ERF from O3, from 1980 to 2022.

CFC gasses.

CFC’s are cheap and efficient gasses to use in refrigerators and air conditioners.Their use rose rapidly until it was discovered they destroyed the protective ozone layer in the stratosphere, so its use, got banned in 1994, later diminished including its use in inhalers. CFCs has since diminished slowly and is maybe already below the levels in 1980. See also Appendix 5.

HFC gasses.

HFCs replaced CFCs and are rapidly growing in use, and the compressor seals still leak. For pictures on why they are a growing concern for the future, see Appendix 6.

The temperature increase from 1980 to 2022 was 0.0015 C or 0.007 W/m2 ERF.

Summary of all greenhouse effect causes for temperature rise from 1980 until 2022:

Effect from water vapor increase: 0.37 C or 1.75 W/m2; 80.9% of total

Effect from rising CO2: 0.04C or 0.19 W/m2; 8.78% of total

Effect from rising Methane: 0.036 C or 0.17 W/m2, 7.86% of total

Effect from rising N2O: 0.0065 C or 0.031 W/m2 1.4% of total

Effect from rising Ozone: 0.0034C or 0.016 W/m2 0.7% of total

Effect from rising HFCs : 0.0015 C or 0.007 W/m2 0.3% of total

TOTAL TEMPERATURE CHANGE 1980 to 2022: 0.4544C or 2.164 W/m2

Conclusion

CO2 amounts to less than 10% if the temperature increase since 1980, and so does Methane. The green new deal is a pipe dream that does not solve the climate problem, but will make it worse.the price of lithium carbonate used in batteries has risen sixteen-fold between 2020 and late 2022. Since then, it has dropped to one third of its peak price. China has corned the market in Lithium for now. There is not enough Lithium to be economically and ecologically justifiable to mine to meet demand in the future. Since solar and wind power are intermittent supplier of electricity they can never be used as base supplier of energy. Other solutions must be offered

Actions to be taken

What congress is doing to solve the problem.

Congress has passed the anti-inflation bill that included over 300 billion to fight climate change, and it included more solar panels and wind turbine motors to be imported from China. The experience from Europe is that electricity from solar panels and windmills is 5.7 times as expensive as conventional power generation.

This analysis was done for 2019, before COVID. The situation is worse now, with electricity rares up to 80 c/kWh, topping $1 /kWh last winter in some countries before subsides.

Even at the current increased European Gas prices, the estimated excess expenditures on Weather-Dependent “Renewables” in Europe is still very large:  $0.5 trillion in capital expenditures and $1.2 trillion excess expenditures in the long-term.

These simple calculations show that any claim that Wind and Solar power are now cost competitive with conventional fossil fuel (Gas-fired) generation are patently false.  The figures give an outline of the financial achievements of Green activists in stopping  fracking for gas in Europe, close on to $1.2 trillion of excess costs.

It would be better not to import any solar panels and wind power generators from China and let them pay for the extra cost rather than building more coal burning plants. After all they were planning to build over a thousand new plants between now and 2030, all legal under the Paris accord. This would benefit the world climate much more, since Chinese coal plants are far more polluting, since China has far less stringent environmental regulations than U.S.

U.S. uses 13.5% of the world’s coal, and eliminating U.S. CO2 emissions would in time reduce the world temperature by 0.023C, providing no other country, such as China and India would increase their use of Coal, which they are, to the total of 1300 new coal plants between now and 2030. This would raise global temperature by more than 0.06 C.

What congress should do instead.

a. What congress should do immediately.

  1. Immediately stop downblending U 233 and pass The Thorium Energy security act SB 4242a. See more here.

2. Remove Thorium from the list of nuclear source material. The half-life of Thorium232 is 14 billion years, so its radioactivity is barely above background noise. More importantly, while Thorium is fertile, it is not fissile and should therefore not be included in the list. This would make it far easier to mine rare earth metals, as long as the ore consists of less than 0.05% Uranium, but any amount of Thorium is allowed without classifying the ore “Source material”.

3. Separate nuclear power into 3 categories. a. conventional nuclear power. b. Thorium breeder reactors that make more U233 than it consumes, and c. Thorium reactors that reduce nuclear waste.

4. Stop buying solar panels from China. Stop buying wind turbine generators from China. Let them install those in China and pay 5 times as much for their electricity.

5. Immediately form a commission led by competent people, not politicians; to decide how to best expand the electric grid and to best harden it against electro-magnetic pulses, whether solar or nuclear and to safeguard it against sabotage.

6. Remove all subsidies on electric cars, solar panels and wind generators, but continue to encourage energy conservation.

7. Encourage research and development of Thorium fueled reactors, especially liquid salt reactors by drastically simplifying and speeding up the approval process. President Trump issued an executive order in the last month of his presidency EO 13972 specifying that the United States must sustain its ability to meet the energy requirements for its national defense and space exploration initiatives. The ability to use small modular reactors will help maintain and advance United States dominance and strategic leadership across the space and terrestrial domains. This EO should be expanded to include civilian small modular reactors, including Liquid salt Thorium reactors less than 200 MW, which are the only valid reactors for space exploration.

Appendix 1, CO2

The following chart shows both CO2 and H2O are absorbing greenhouse gases, with H20 being the stronger greenhouse gas, absorbing over a much wider spectrum, and they overlap for the most part. But it also matters in what frequency ranges they absorb.

For this we will have to look at the frequency ranges of the incoming solar radiation and the outgoing black body radiation of the earth. It is the latter that causes the greenhouse effect. Take a look at this chart:

The red area represents the observed amount of solar radiation that reaches the earth’s surface. the white area under the red line represents radiation absorbed in the atmosphere. Likewise, the blue area represents the outgoing black body radiation that is not absorbed. The remaining white area under the magenta, blue or black line represents the retained absorbed energy that causes the greenhouse effect.

Let us now take a look at the Carbon Dioxide bands of absorption, at 2.7, 4.3 and 15 μm. Of them the 2.7 and 4.3 μm bands absorb where there is little black body radiation, the only band that counts is at 14.9 μm, and that is in a band where the black body radiation is near its maximum. Let us first consider the CO2 alone in a dry atmosphere, that is one with no water vapor at all. We will investigate the concentration of 335 ppm (in 1980) and 415 ppm (in 2022)

The very top line of the top black band represents total absorption at 415 ppm, the bottom of the black black band represents absorption at 335 ppm. Divide the frequency spectrum in 3 parts, below 14 μm, 14-16 μm, and above 16 μm, In the 13 to 14 μm band 66% of available energy is absorbed at 335 ppm, 70% at 415 ppm. in the 14 to 16 μm band 100% of available energy is absorbed at both 335 and 415 ppm. In the > 16 μm the numbers are also 66 and 70%. In addition, temperature is 0.5 C higher at 415 than at 335 ppm, so available energy is 0.7 % higher at 415 ppm.

The net result is greenhouse gas contribution for CO2 is 5.10 C at 335 ppm and 5.26 C at 415 ppm and 1.5C higher ambient temperature for a dry atmosphere.

The normal way to account for greenhouse gasses contribution is to simply add together the CO2 contribution and the contribution from water vapor. This leads to the wrong result for in doing so, the total result is more than 100% for some energy band, because it is impossible to add more than 100% of all available energy for a given wavelength. Again, the spectrum of interest is 13 to 17.4 μm.

The first thing to notice is that no absorption exceeds 100% , so at 14.9 μm wavelength CO2 absorbed 100%, and water vapor absorbed another 75%, the total sum is still 100%. It is impossible to absorb more than 100% of the total energy available for that wavelength. Therefore between the wavelengths 14 and 16 μm all energy was absorbed regardless of CO2 concentration and water vapor concentration. The only fair way to allocate the absorption is proportionally, 57% to CO2 and 43% to water vapor. Likewise, the 13 to 14 μm band is not fully saturated, so the total absorption is 62% of available energy for CO2 and 33% for water vapor. In the 16 to 17.4 μm range the total absorption is 44% for CO2 and 55 % for water vapor. For CO2 at 335 ppm and average temp 13.5 C the total temperature rise, when proportionally allocated comes to 2.73 C for the CO2 and 2.30 C for the water vapor. For CO2 at 415 ppm and an average temp 0.5 C higher, at 14 C average the net temperature increase or ERF in the 13 to 17.4 μm band is 0.035C or +0.17 W/m2 for the water vapor and 0.04C or +0.19 W/m2 for the CO2.

Appendix 2, Methane

Atmospheric methane levels averaged 2.0 ppm (parts per million) during 2022, or around 25% greater than in 1980. It is a 28 times stronger greenhouse gas by itself unlike CO2, because its absorption is not saturated in the atmosphere. On the other hand the lifetime of Methane in the atmosphere is 10 to 15 years, some of the Methane eating bacteria will do its job. There is only one significant absorption band that absorbs in the atmospheric window at 7.7 μm, at the edge of the atmospheric window.

The picture shows a small peak at 7.7μm. This is because at lower wavelengths absorption from water vapor has nearly eliminated the CH4 contribution. Remember that total absorption can never exceed 100 %, so the maximum absorption from CH4 occurs at 7.7μm. At 1.6 ppm it amounts to a greenhouse effect of 0.68 C for a dry gas.

The only major absorption line at 7.7 μm has two side lobes, at 7.5 and 7.9 μm. In the 7.5 μm sideband water vapor already absorbs nearly all energy, so the NH4 is of little effect. In the 7.9 μm sideband water vapor is 50% saturated at that level and the NH4 net absorption is 20% the net greenhouse effect is one fifth of the effect for a dry gas, or 0.14 C. In 1980 the CH4 concentration was 1.6 ppm and will be 2.0 ppm in 2022 which results in an increase of the greenhouse effect of 0.035 C or 0.17 W/m2 ERF from rising levels of Methane since 1980

Appendix 3, N2O.

Atmospheric N2O levels averaged 336 ppb (parts per billion) during 2022, about and was 301 ppb in 1980. It is a 300 times stronger greenhouse gas than CO2 by itself, because its absorption is not saturated in the atmosphere. When water vapor is dominant it is diminished by over 70% since it is at the edges of the Atmospheric window. On the other hand the lifetime of N20 in the atmosphere is short and is typically greatest at 5 p.m. One of the major reasons for the N2O increase is the increase of fertilization with nitrates, the other is from diesel fumes from trains, boats, ships, trucks and mining equipment

The picture shows a double N2O peak at 7.4 and 7.8 μm. . At 0.336 ppm in 2022it amounts to a greenhouse effect of 0.325 C for a dry gas. In the 7.4 μm band water vapor is saturated, in the 7.8 μm band 80% is saturated by water vapor.In 1980 the N2O concentration was 0.3 ppm which results in an increase of the greenhouse effect of 0.0065 C or 0.031 W/m2 ERF from rising levels of N2O since 1980 .

N2O is commonly called laughing gas, and is hazardous in high concentrations, and should be limited in confined places, but in concentrations of under 1 ppm nobody laughs because of that.

Appendix 4, Ozone.

Ozone or 03 is good if it is in the stratosphere. There it helps to absorb the ultraviolet and cosmic rays from the sun and other cosmic radiation. Ozone is bad if it is near the ground. The total proportion of O3 in the troposphere is about 0.01 ppm, yet it is a substantial greenhouse gas because it forms by uv radiation in the stratosphere and mesosphere, and thus protecting us from uv damage. See figure:

The O3 in the troposphere on the other hand is bad. It is normally around 0.01 ppm, but is considered damaging if people are exposed to more than 0.08 ppm in an 8 hour period. This can happen in urban environments in warm and stagnant weather, typically through car traffic. It is a great greenhouse gas because its main absorption band is at 9.5 μm, right in the atmospheric window where the outgoing black body radiation is the greatest. See fig:

The dotted blue line at 9.5 μm represents the tropospheric absorption, the total absorption is between the brown and the solid blue line. The total greenhouse effect from O3 is 0.88C, but the stratosphere does not interact very much with the troposphere, so the stratospheric O3 does not count as a greenhouse gas, only tropospheric O3. The total contribution to the greenhouse effect from tropospheric O3 is about 1/5 of the total, because atmospheric O2 absorbs in the same band limits the temperature rise to 0.17C When the earth’s temperature rises by 0.5C, from 1980 to 2022, the amount of tropospheric O3 probably rises by 2% (Lacking good data I am guessing wildly, in urban areas it may be much more, but this is global average). This comes to 0.0035C temperature increase or 0.016 W/m2 ERF from O3, from 1980 to 2022.

Appendix 5, CFC gasses.

ChloroFluoroCarbon (CFC) gasses started to be manufactured at the beginning of the refrigeration age, replacing ice as the refrigerant. It soon appeared in the atmosphere, mostly due to leaks in the air conditioner compressor seals. It didn’t amount to much as a greenhouse gas even though it was five thousand times more efficient than CO2 as a greenhouse gas. It was discovered that CFCs ate up the Ozone in the stratosphere, and if it continued to increase it could deplete the protective Ozone layer faster than it could be produced. In fact it created an Ozone hole over Antarctica. So it got forbidden Jan 17, 1994, In 2020 even China stopped production. Since 1994 CFC are decreasing by about 1% per year, but cheating persisted, especially among poorer nations and China. By 2022 it will probably have a greenhouse effect of 0.01C or 0,05 W/m2 ERF.

Appendix 6, HFC gases.

CFC started to be phased out and replaced by HydroFluoroCarbons (HFC), less efficient and more expensive, but at least they do not deplete the Ozone layer that protects us from cancer. Some of the HFCs are even bigger greenhouse effect generators than CFC, but well worth it to protect the Ozone layer. Their biggest absorption bands are in the middle of the atmospheric window.

If nothing is done to control them they will increase from nothing in 1980 until 2022 and beyond. See fig: NOAA Research News

The temperature increase from 1980 to 2022 was 0.0014 C or 0.007 W/m2 ERF..