Leg 1 of The Trans-Rocky-Mountain aqueduct. From the Mississippi river to Webbers Falls lock and dam.

The Trans-Rocky-Mountain aqueduct starts out at the Mississippi river, and for the first leg follows the Arkansas River from Mississippi River to Lock16 of the Arkansas River, a distance of 366 miles.

Location of the locks and pumping stations on the Arkansas river.

Lock 1, entrance from the Mississippi River to the White river. The water surface at Montgomery Point has fluctuated from elevation 104′ to 172′.

This lock was added later to better accommodate barge traffic when the Mississippi River was running abnormally low. If the Mississippi is normal to high level, this lock is bypassed. Since we are going to move 11,200 cfs of water over the rocky mountain the flow amount in Arkansas river will be reduced by the same amount. In times of drought, the Arkansas River flow is sometimes lower than 11,200 cfs. To alleviate that, a series of 7,500 cfs pumps will be installed, one in every lock of the canal, beginning with Lock 1. They will be in use only as needed, probably less than 10% of the time.

Montgomery Point Lock and Dam features “first of its kind” hydraulically operated gates. When the tail water is at elevation 115′ and rising, the dam gates are flat on the bottom of the river and barge traffic passes over the gates in the navigation pass spillway to minimize lockages saving time and money.


Elevation 142′ Add one 7,500 cps pump
Elevation 162′ Add one 7,500 cps pump

Elevation 182′
Elevation 1196′
Elevation 213′
Elevation 231′
Elevation 249
Elevation 265′
Elevation 284′
Elevation 336′
Elevation 370′
Elevation 391′
Elevation 412′
Elevation 458′
Elevation 487′

From Lock # 3 to lock # 16 (13 locks # 11 is missing) the Power houses have to either replace one of the operating turbines to a corresponding dual function pump/generator, or add a 7,500 cfs pump.

By removing 11,200 cfs from the flow of water in the Arkansas river, it will be necessary to add these pumps to ensure functioning locks even in times of extreme droughts. The total power generated by the power stations will be reduced by 11,200 cfs times (487 – 127) feet * 0.9 or about 370 megawatts total if there is no water released by the spillways. This is the maximum power loss. If the river flow more than about 55,000 cfs there less loss of power, tapering off , so at 67,000 cfs there is no loss of power.

As a side note, every lock opening uses up water equivalent of between 22 and 66 kWh depending on the size of the lift or lowering of the barges. This is constant and not dependent on the size of the barges or boats. When the spillways are in use, the water is “free”, but otherwise every lock opening costs a few dollars in energy, not much, but in case of a drought the fact that water is pumped back up the river will help increase the capacity.

What is in it for Arkansas? The added pumps will give an additional tool to control the canal system. In addition, in the case of floods it will somewhat alleviate the flood control, and serve the canal system better in times of drought. To add 370 megawatts to the system, may I suggest 2 200 MW LFTR nuclear reactors, they are carbon neutral.