Why Thorium? 37. China has approved the commissioning of a thorium-based molten salt nuclear reactor. The Cat is out of the bag.

The reactor, known as “Thorium Molten Salt Reactor – Liquid Fuel 1 (TMSR-LF1)“, began construction in 2018 in Wuwei City, Gansu Province, by the Hongshagan Industrial Cluster.

The TMSR-LF1 reactor is an experimental liquid fluorinated thorium reactor using a LiF-BeF2 -ZrF4 -UF4 [+ThF4] fuel salt mixture and a LiF-BeF2 coolant salt. It runs on a combination of thorium (about 50 kg) and uranium-235, enriched to 19.75%, and can operate at a maximum temperature of 650°C for up to 10 years. The liquid fuel design is based on the molten salt reactor experiment conducted in the 1960s by the Oak Ridge National Laboratory in Tennessee, USA.

With this authorization, China has become the first country to take a significant step towards harnessing the power of thorium for clean, large-scale energy generation in over 50 years.

“From Reuters in Dec 2013: “China has enlisted a storied partner for its thorium push: Oak Ridge National Laboratory. The U.S. government institute produced the plutonium used for the Manhattan Project and laid important groundwork for the commercial and military use of nuclear power.

The Tennessee lab, as it happens, helped pioneer thorium reactors. The Pentagon and the energy industry later sidelined this technology in favor of uranium, (it didn’t produce Plutonium 239.) The Chinese are now enthusiastically tapping that know-how, in an example of how the rising Asian superpower is scouring the world for all sorts of technology needed to catch up to America in a broad array of scientific fields.

Thorium’s chief allure is that it is a potentially far safer fuel for civilian power plants than is uranium. But the element also has possible military applications as an energy source in naval vessels. A U.S. congressman unsuccessfully sought to push the Pentagon to embrace the technology in 2009, and British naval officers are recommending a design for a thorium-fueled ship.

In a further twist, despite the mounting strategic rivalry with China, there has been little or no protest in the United States over Oak Ridge’s nuclear-energy cooperation with China.

“The U.S. government seems to welcome Chinese scientists into Department of Energy labs with open arms,” says physicist and thorium advocate Robert Hargraves. He and other experts note that most of the U.S. intellectual property related to thorium is already in the public domain. At a time when the U.S. government is spending very little on advanced reactor research, they believe China’s experiments may yield a breakthrough that provides an alternative to the massive consumption of fossil fuels.

The technology’s immediate appeal for China, both Chinese and American scientists say, is that thorium reactors have the potential to be much more efficient, safer and cleaner than most in service today.

The Chinese plan to cool their experimental reactors with molten salts. This is sharply different from the pressurized water-cooling systems used in most uranium-fueled nuclear plants. The risks of explosions and meltdowns are lower, proponents say.

“If a thorium, molten-salt reactor can be successfully developed, it will remove all fears about nuclear energy,” says Fang Jinqing, a retired nuclear researcher at the China Institute of Atomic Energy. “The technology works in theory, and it may have the potential to reshape the nuclear power landscape, but there are a lot of technical challenges.”

Other advocates agree on thorium’s peaceful promise. Republican Senator Orrin Hatch and Senate Majority Leader Harry Reid, a Democrat, introduced legislation in 2010 calling on the U.S. government to share its thorium expertise.” The bill failed, leaving Oak ridge labs to look for other sponsors. That was in 2013.

What China has done is to turn the nuclear clock back to the mid-1960s, when Oak Ridge successfully operated a reactor with fuel derived from thorium and cooled with molten salts. The lab also produced detailed plans for a commercial-scale power plant, which was then shared with the Chinese.

If successful, TMSR-LF1 would open the door to developing and constructing a demonstration facility with an output of 373 MWt by 2030 and could lead to the construction of a TMSR fuel salt batch pyroprocessing demonstration facility, which would enable the utilization of the thorium-uranium cycle in the early 2040s.

Top view of a thorium molten salt reactor

What did I mean by “The Cat is out of the bag”? Only that molten salt Thorium reactors are breeder reactors that can produce more U233 than is used, and if U 233 is stolen, it can be used to make nuclear bombs, like Plutonium 239 is used for nuclear bombs. Nobody has done it yet, and it is more difficult to do than with Plutonium, but it is possible. However Uranium 233 contains 0.02% Uranium 232, which is used as a tracer in chemical processes, so U 233 is easy to trace.

The race is on, there is no stopping it now!

Published by

Unknown's avatar

lenbilen

Retired engineer, graduated from Chalmers Technical University a long time ago with a degree in Technical Physics. Career in Aerospace, Analytical Chemistry, computer chip manufacturing and finally adjunct faculty at Pennsylvania State University, taught just one course in Computer Engineering, the Capstone Course.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.