Climate change is on balance good! A Limerick and explanation.

The Epoch named Anthropocene:

Man’s fire appeared on the scene.

CO2, it is good

makes it green, grows more food.

To call it THE threat, that’s obscene.

We live in a new geological epoch, the Anthropocene, where Earth faces the immediate danger of runaway heat catastrophe. So says Science Advances  09 Nov. 2016: Nonlinear climate sensitivity and its implications for future greenhouse warming.  The paper claims that as temperature increases due to increased CO2 levels the climate sensitivity also increases leading to global heating runaway. To prove the point it provides the following graph:

globaltemperatureIt was timed for the day after the U.S. election to highlight the necessity of complete adherence to the Paris accord. This accord is one of  the accomplishments of the Obama administration, as President Barack Obama said April 22, 2016: “Today is Earth Day — the last one I’ll celebrate as President. Looking back over the past seven years, I’m hopeful that the work we’ve done will allow my daughters and all of our children to inherit a cleaner, healthier, and safer planet. But I know there is still work to do.

Can this really be true that implementing the Paris agreement is our only chance to avert this disaster?

I still remember well the first Earth Day, April 22, 1970, the 100th anniversary of Lenin’s birth. It was in Philadelphia, and Ira Einhorn,Earthday1070IraEinhorn later known as the Unicorn killer was master of ceremonies. At that time the great fear was that we are heading for another ice age because of all the acid rain the coal burning electricity plants spewed out, and having just visited Pittsburgh, I totally agreed and was ready to jump in and help. The acid rain was said to wipe out the trouts in the Northern, acidic lakes, and pollution was seen everywhere. Being from Sweden and having just 6a00d83451580669e2019b01ece999970bimmigrated I was appalled at the lack of concern for the environment, and the imminent threat of the coming ice age. Even Time Magazine jumped into the fray and wrote about the rapid increase of the Arctic Ice cover and other signs of the onset of a new Ice age. Average temperatures was to be maybe up to seven degrees colder by the year 2000, so prepare!

Having been raised in Sweden, born in a town on the granite covered shores of lysekil-swedenSkagerrak there were signs of the last ice age everywhere. Sweden is still recovering from it and is rising out of the ocean at a rate of up to three feet per century and has been doing so since the inland ice began to melt. Of course this contributes to sea levels rising in the rest of the world.  The Ice Age left evidence of cataclysmic events as the climate switched from cold to warm. I still remember when as a lad my father took me to a place in Western Sweden, called “Brobacka” where there are  around 40 “jattegrytor” (giant kettles),  including the biggest giant kettle in the Nordic countries, measuring 59 feet  wide. They were formed when large rivers formed under the rapidly melting icepack. We learned in school about ice ages, and that we are at the end of the interglacial period, and we narrowly avoided a new ice age in the 1600’s and are thankful it didn’t happen then.

The normal climate for the earth is that we are in an ice age, which is a very stable period, but for  some reason an imbalance occurs and the climate switches abruptly to an interglacial period. After a few thousand years we go back into an ice age and stay there for around 100000 years and the cycle repeats. The question is, what mechanism is ruling ice ages and interglacial periods?

antarctic_icecoreTDoes CO2 concentration drive climate change? From the chart above it seems so. Properly plotted there seems to be a near perfect alignment.  But to find what is cause and effect we need to expand the time scale as is seen in the figure below:

end-of-ice-age-edWe can see from these charts that CO2 concentrations and temperature follow each other closely, but, and this is important:  Air Temperature rises first, then comes the increase in CO2 and finally the rise in ocean temperature. As ice melts and the ocean temperature increases it releases CO2, and this leads to a further temperature rise.  But at some time the temperature stops rising while CO2 levels still rise.  Since about 10000 years ago the temperature has been slowly decreasing and so has the CO2 levels. The Coral reefs make carbonates, the bogs make cellulose, the oceans revert to cooling and start to absorb CO2 again.

Give thanks for “the pause” and clouds. A Limerick.

What is the reason for the cooling? Could it be volcanic eruptions?

Maybe, but volcanic eruptions are temporary and does not cool the climate for more than a few years. Meanwhile enjoy the vegetation during this interglacial warm period.leaf-areaIt is true that CO2 is a greenhouse gas,  second only to water vapor in importance.It is responsible for about 9 degree Celsius rise in global temperature, and if CO2 increases, so does its greenhouse effect. The increased temperature leads to more water vapor in the air, and water vapor is the strongest greenhouse gas, so there is a risk of reaching a “tipping point” when we could experience a thermal runaway of the planet. All of this is true, so U.N. and many governments around the world have sponsored studies to model  climate change, over a hundred models have been constructed, they all come up with rather gloomy forecasts. The research is so intense that over 3 billion dollars of government monies are spent yearly on climate change research.

All models show a similar pattern, a fairly steep and more or less linear rise in temperature as CO2 increases. There is only one major thing wrong with them. They do not agree with what is happening to the global temperature. We have now had 224 months (Sep 2015) without any global warming. Since then there has been a rather strong el nino, much like the one in 1998 and global temperatures have been at new record temperatures after adjustment of old temperatures.

Back to the climate models chart

CMIP5-73-models-vs-obs-20N-20S-MT-5-yr-means1What is wrong with the models? They all assume a passive earth, where there is no negative feedback to the changing environment. It turns out, the earth has a “governor”, and it can be expressed in one word, albedo, which means “whiteness” or how much of the incoming sunlight that gets reflected back into space. The major albedo changes of the earth are the appearance of clouds. How do the models do on clouds?

CloudmodelsNone of the models agree with reality when it comes to clouds. It also matters what type of clouds there are, and when they occur. Night clouds keep the warm in and increases the greenhouse effect. Daytime clouds reflects the incoming sunlight and the result is a net cooing effect.

Other albedo changers are the amount of ice around the poles, but even land use changes such as forests cut down and replaced by agriculture and urbanization.

When there is snow or ice on the ground, more sunlight gets reflected and it gets colder still. Urban heat islands are warmer than the surroundings, airports are warmer than its surroundings. Interestingly, that is where we are placing our new weather stations. (This is great for pilots that have to evaluate take-off and landing conditions, but is less than ideal for climate research. But then again, climate research has moved from the realm of physical science to political science, where different rules do apply.)

The most important albedo changers of the earth are clouds. Without them no land based life would be possible since clouds serve both as rain makers and temperature stabilizers. If there were no clouds the equilibrium temperature at the equator would be around 140 degrees F.

Over the oceans, in the so called “doldrums” where there are no trade winds, the mornings start with a warm-up, and when the conditions are right a shower or thunderstorm occurs. The ambient temperature is usually between 84 and 88 degrees when this happens. As CO2 concentrations increase thunderstorms occur a few minutes earlier and last a little bit longer, but they are no more severe and as a result the average temperature stays the same.

See the following chart. It is divided into five regions, Arctic, North temperate, tropical, South temperate and Antarctic.uah-lower-troposphere-temperatureThe next region is the North temperate. This includes the desert areas. In desert areas of the world this temperature regulator doesn’t work well, so deserts will receive the full force of temperature increase which is 1.6 degrees Fahrenheit per doubling of CO2 levels.

In the temperate region the temperature increase will be somewhere in between. Dry days will be warmer, cloudy and rainy days will have the same temperature as before, since the cloud regulator starts to function.

The Arctic and Antarctic regions are a special case. None of the models have done a good job at modeling the clouds at the poles, especially the South Pole. (See the cloud chart above.) The Arctic will warm up more than 2 degrees F, how much is a question. In the South average temperatures will rise from – 70 degrees F in the interior all the way to maybe – 63 degrees F, and come closer to freezing in the summer at the northern edges. There may be added snowfall that will expand the ice sheet. The Antarctic ice sheet has set new records since record keeping began, and war 2 years ago bottoming out at 30% more ice than the 30 year average. Recently even the Antarctic ice sheet been receding.

The North Pole region is even more complicated since it is partially land, partially ocean. The oceanic ice cap has been shrinking  at a fairly constant rate the last 30 years, but since 2012 it broke the trend and grew back to break the trend line. The winter snow cap has remained at about the same level year to year with a slightly positive trend line, this year being no exception.  So, why is the snow cover growing slightly, but ice cover shrinking? The common explanation has been global warming, but the ice cover kept shrinking even as the temperature increase leveled off. There are two possible explanations: Warming oceans and changes in pollution. The North Atlantic Oscillation has been mostly positive (warmer) since 1970 and has only recently turned negative, so that is certainly part of the cause of the shrinking of the icecap, but another candidate is even more likely: Carbon Pollution. With that I do not mean CO2, but good old soot, spewing out from the smokestacks of  power plants in China. 45% of all coal burned is burned in China, often low grade lignite with no scrubbers. The air in Beijing is toxic to humans more days than not. Some of that soot finds its way to the arctic and settles on the ice, changing its albedo, and the sun has a chance to melt the ice more efficiently. This occurs mostly in the months of August and September when the Sun is at a low angle anyway, so the changing of the albedo has very little effect on temperature. The net result of all this is that the temperature in the North Pole region will rise about 4 degrees Fahrenheit for a doubling of the CO2. This will have a very minor effect on the Greenland ice cap since they are nearly always way below freezing anyway (-28 degree C average). The largest effect will happen in August and September in the years when all new snow has melted and the soot from years past is exposed. This happened two years ago with a sudden drop in albedo for the Greenland ice. It will also lead to an increase in the precipitation in the form of snow, so the net result is the glaciers may start growing again if the amount of soot can be reduced.

An interesting fact is that the sunlight reflection is larger over water than over ice in August and September in the Arctic, co melting the Arctic ice reduces the greenhouse effect.

The conclusion is: The temperature regulator of the earth is working quite well, and the increase in temperature at the poles is welcome as it lessens the temperature gradient between the tropics and the polar regions, which in turn reduces the severity of storms, and tornadoes, since they are mostly generated by temperature differences and the different density of warm, humid and dry, cold air.

 

hurricaneshurricanesmajor

 

tornadoes

 

tornadosvsco2

 

 

 

 

 

 

 

 

 

The Polar Bears will do quite well, their numbers have more than doubled in the last 50 years.

Will droughts increase? The data does not indicate so:

sdata20141-f51

What about ocean acidification? As CO2 increases, a lot of it will be absorbed in the oceans, thereby making the oceans more acid. This is true, but CO2 is a very mild acid and has a minor acidic influence. Of much more importance is acid rain. At one time in the 70’s some lakes in Norway had a Ph. of about 4.5, enough to kill most trout fishes. In Sweden it was said they fertilized their rivers and lakes four times as much as tilled soil, leading to significant acidification of both the Baltic and the North Sea. The Baltic Sea is still in danger of total oxygen depletion. By comparison to these dangers CO2 in the ocean is only a very minor disturbance. Clean the rivers and lakes first!

ph-feb-ocean-800

Oh, and one more thing. The sea level rise is a natural phenomenon of tectonic plate movements, the Atlantic Ridge is rising and the Eastern Seaboard is sinking.  These movements will continue to occur regardless of the climate.

John Kerry said in Indonesia the other day: “The science is unequivocal, and those who refuse to believe it are simply burying their heads in the sand. We don’t have time for a meeting anywhere of the Flat Earth Society.  And in a sense, climate change can now be considered another weapon of mass destruction, perhaps the world’s most fearsome weapon of mass destruction.

The opposite is true, increased levels of CO2 is a major vehicle of wealth distribution. (Green is increased plant growth, red is decreased,  1982 – 2010)

increaseThe increase in temperature is manageable and even desirable in most regions of the world, desert areas and areas prone to flooding being the exception.

In conclusion:

CO2 is a clean gas, necessary for life, and an increase in the amount of CO2 is highly desirable.

The very minor increase in temperature is on balance beneficial, since it leads to a less violent climate, with fewer storms, hurricanes and tornadoes.

The increase in CO2 makes us able to feed another 2 billion people on earth, not to mention additional wildlife.

Ocean acidification is a problem, not so much from CO2, but from sulfuric acid, nitrates and other pollutants. The major offender: China.

The increase in precipitation is beneficial, except in areas already prone to flooding. It is especially welcome in arid areas. The chart below show no increase in heavy rains as CO2 increases.

heavyrainfallvsco2

On the other hand the great conservationist SARAH PALIN once said: “We’ve got to remind Americans that the effort has got to be even greater today toward conservation because these finite resources that we’re dealing with obviously – once oil is gone it’s gone, once gas is gone, it’s gone. And I think our nation has really become kind of spoiled in that arena.”[Fox News, Hannity’s America, 10/12/08]

Coal, oil, peat, wood  and natural gas are our best raw material to sustain life as we know it, and are far to valuable to waste on electricity production, so let us switch electricity production to thorium based nuclear energy

. https://lenbilen.com/2012/02/15/nuclear-power-and-earthquakes-how-to-make-it-safer-and-better/

https://lenbilen.com/2012/02/15/eleven-reasons-to-switch-to-thorium-based-nuclear-power-generation/

https://lenbilen.com/2012/02/15/eleven-more-reasons-to-switch-to-thorium-as-nuclear-fuel/

https://lenbilen.com/2012/02/15/nuclear-power-why-we-chose-uranium-over-thorium-and-ended-up-in-this-mess-time-to-clean-up/

https://lenbilen.com/2012/01/31/energy-from-thorium-save-500-million-from-the-budget-now/

Coal can be converted to jet fuel and gasoline, air planes have no alternative fuels.

I welcome constructive comments. Tell me where I am going wrong. I have done my very best to look at what is really happening to the earth and from there draw conclusions, rather than rely on climate models.

 

 

 

Published by

lenbilen

Engineer, graduated from Chalmers Technical University a long time ago with a degree in Technical Physics. Career in Aerospace, Analytical Chemistry, and chip manufacturing. Presently adjunct faculty at PSU, teaching one course in Computer Engineering, the Capstone Course.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s