Nuclear Power. Why we chose Uranium over Thorium and ended up in this mess. Time to clean up.

I was born in Sweden, on the beautiful west coast where fishing was a way of life, the sunsets magnificent in the summer and the sailing around the skerries and in the fjords could never be forgotten. On the West Coast is also the second largest Swedish city, Gothenburg, home of the famous Chalmers’ Technical University. The year was 1948 and the Norwegian anthropologist Thor Heyerdahl had made his famous “Kon-Tiki  expedition” sailing on a balsa raft from South America to Polynesia.

Apr 30 is the official day to celebrate the arrival of spring in Sweden and Chalmers celebrates it in its own way with a parade somewhat like the Mardi Gras parade in Latin countries. I was there as a 6 year old lad when the float with a rather imaginative copy of the Kon-Tiki raft rattled by. I say rattled, for a galvanized wash tub was hooked up in the back with a rope and it made a loud metallic noise going down the cobblestones. This was the greatest thing I had seen or heard, so I decided right then and there to become a Chalmerist.

Sweden is a beautiful country with clean and abundant water, beautiful forests, a coast line full of small islands and fertile valleys, where the long summer days provide enough growing season to ensure good harvests. The nature is fragile, sensitive to acid rain and pollution. As I grew up I noticed a sharp deterioration in the water quality, there was too much nitrogen in the lakes, “we are fertilizing or lakes on average four times as much as our land” was a quote that stuck in my mind. The acid rain that came in from England and Germany killed the trouts in the cold mountain lakes, and algae bloom took out the oxygen in the larger lakes. In addition we had been treating our seed with Mercury, so carnivorous birds and animals were threatened with extinction.

The time came to apply to University, and to my delight I was accepted to Chalmers’ as a Technical Physics major. I felt, maybe I can do my part by becoming a Nuclear Engineer and help solve the energy needs of the future. The Swedes at that time championed the heavy water – natural Uranium program together with the Canadians. Sweden was at that time non-aligned, so it was not privy to any atomic secrets, it had to go it alone. They settled on the heavy water moderated natural Uranium process because Sweden had an ambition to produce its own nuclear bomb. Officially this was never talked about, and I was not aware of it at that time. They could have gone with Thorium instead, but Thorium produces very little Plutonium, and what it produces is PU-238, not suitable for bomb making.

I was excited to learn about all the possibilities and signed up for a couple of nuclear classes. One lab was to design a safety circuit, then run the heavy water research reactor critical and hopefully watch the reactor shut down from your circuit, not the safety shutdown. Then the word came that U.S. will sell partially enriched uranium at bargain basement prices if Sweden agreed to abandon the heavy water project and sign the nuclear non-proliferation treaty, a treaty being formulated by U.N.

Sweden was in awe about U.N, all the problems of the world were to be solved through it, and it had such capable General Secretary in Dag Hammarskjöld, a Swede. I looked at the light water, partially enriched  Uranium nuclear power plants being developed and decided to have no part with it, not due to safety concerns but it was the design that produced the most nuclear waste of any of the available designs. At that time there was still optimism that fusion would be ready by about the year 2010 or so. The cost of maintaining spent fuel in perpetuity was never considered, so light water reactors became the low cost solution.

India on the other hand refused to join the nuclear non-proliferation treaty, kept their heavy water program going and had by 1974 produced enough plutonium for one nuclear bomb, which they promptly exploded.  They still use heavy water moderated reactors, but since India is low on Uranium but rich in Thorium they have now converted one heavy water reactor to thorium with a Plutonium glow plug. It is set to go on-line in 2011. (1)

They are also developing  molten salt Thorium reactors, but full production is still a few years off.

There we have it. We could have gone with Thorium from the beginning, but the cold war was on, and the civilian peaceful use of nuclear energy was still all about nuclear weapons. Once all the bombs we could ever need were developed the greatest asset of nuclear power became its greatest liability.

We need to start over with Thorium, producing 0.01% of the long term wastes of other processes. There is enough Thorium around to last a million years at today’s cost. They can be built and produce energy for about 60% of the cost of a light water plant, and the total cost of ownership is even less since it produces and consumes its own fuel as you go. We will run out of just about every other ore long before then.

As time goes by, garbage dumps will look more and more attractive, having batteries, Mercury lamps, poisons galore, but also useful stuff capable of producing energy and fuel for transportation.  There are ongoing plans to convert garbage to jet fuel is taking place(2)

The future will need more energy to clean up the mess we’ve gotten  ourselves into.  Thorium is one part of the answer. Wind and solar are only blips on the energy chart, ethanol made from corn or other edible sources should be done away with, other biofuels can only do so much. Nuclear will have to play an increased role. Go Thorium!

• (1) India has a vision of becoming a world leader in nuclear technology due to its expertise in fast reactors and thorium fuel cycle. India’s Kakrapar-1 reactor is the world’s first reactor which uses thorium rather than depleted uranium to achieve power flattening across the reactor core. India, which has about 25% of the world’s thorium reserves, is developing a 300 MW prototype of a thorium-based Advanced Heavy Water Reactor (AHWR). The prototype is expected to be fully operational by 2011, following which five more reactors will be constructed. Considered to be a global leader in thorium-based fuel, India’s new thorium reactor is a fast-breeder reactor and uses a plutonium core rather than an accelerator to produce neutrons. As accelerator-based systems can operate at sub-criticality they could be developed too, but that would require more research. India currently envisages meeting 30% of its electricity demand through thorium-based reactors by 2050.

(2)(Feb 18, 2010) British Airways has announced plans to source a part of its fuel supplies from waste municipal waste to fuel plant. The company plans to procure 16 million gallons of green jet fuel annually from the Solena plant that would come up in London. The plant which is expected to come online in 2014 would convert 50,000 tonnes of municipal waste into jet-grade fuel. The volume of fuel supplied initially would be 2 percent of the total fuel consumption of British Airways. This would cut down on the carbon emissions generated due to the conventional jet fuel, kerosene.

The electric car. Is it good or bad Karma?

The electric car. Is it good or bad Karma?

Boy are we advancing in leaps and bounds:

Here is the Roberts electric car, built 1896.

It gets 40 miles to the charge.

116 years later, how far have we come in battery development?

Most electricity is produced by burning coal.  Much peak electricity is produced by burning natural gas. We have recently discovered large quantities of shale deposits. One of the chief developer  of the North Dakota deposits is Mr. Hamm, CEO of Continental Resources, who at one time had a brief talk with President Obama. Mr. Hamm told Obama of the revolution in the oil and gas industry and how we have the capacity to produce enough oil to enable America to replace OPEC. He wanted to make sure that the President knew about this.

The President’s reaction? He turned to Mr. Hamm and said: ‘Oil and gas will be important for the next few years. But we need to go on to green and alternative energy. [Energy] Secretary [Steven] Chu has assured me that within five years, we can have a battery developed that will make a car with the equivalent of 130 miles per gallon.’

116 years after the Roberts electric car we have the 2012 Chevrolet Volt. It gets 36 miles to the charge.

But it is not over yet.

The latest entry in the electric car business is the Fisker Karma. It sports 32 miles to the charge.  When running on electricity, the claim is it gets the equivalent of 54 miles per gallon. After that it has a regular sports car engine that gives 20 MPG. What does that last statement mean? Batteries store energy and can never be more than 100% efficient. There is a loss of energy when you charge them and a loss of energy when you discharge them. The energy is typically produced by burning coal. By charging batteries you need to keep old coal burning plants in production longer. The average energy efficiency of an aging coal plant is 31%, the transmission losses are about 8% and battery efficiency is about 75%. When electric car companies calculate MPG equivalency they only take into account the battery efficiency. For the Karma the total energy efficiency equivalence would not be 56 MPG, but 16 MPG.

For now the Karma will be built in Finland, with a half billion dollar loan guarantee from the Federal Government. After one year this energy guzzler is supposed to be built in Delaware. Maybe it will be as popular as the Chevy Volt, which is on track to sell 6000 vehicles this year.

There already exists a car that claim 135 miles per gallon equivalent fuel consumption.

(The picture to the right shows the Tesla in a car crash in of all places Aalbaek, Denmark. The Tesla is at the bottom.)

The car is Tesla, a new car company set up privately in 2003. It got a 465 million dollar Federal loan guarantee in 2009, but has yet to turn a profit. The car is all electric, and gets up to 300 miles to a charge.  It can be yours for a mere $109500 plus taxes, but you will get a 7500 dollar federal tax rebate unless you live in Colorado where you will get an additional 40000 dollars in state and local tax rebate. The car is sold to rich playboys, who use it as the ultimate chick attractor, and the making of the car is financed on borrowed money. If one is to include the losses in producing the 4000 cars sold thus far, the cost per car approaches 200000. But fear not. One of the sources of income for Tesla is the sale of zero emission credits to other car companies so they can meet their emission standards. It is the new round of charlatans selling indulgences so the global governance can be realized.

Why am I down on electric cars? First, the energy to drive the car must have been produced somehow. As long as we use coal to produce electricity there will be more CO2 in the air with electric cars than with diesel powered cars. Second, electric cars are heavier than corresponding gasoline powered cars and have less room. Third, it takes an awful lot of mining to produce all the rare materials that goes into a modern battery. This too takes a lot of energy and leaves scars on the landscape. Fourth, batteries last only so long and are expensive leading to a much more expensive car to purchase and maintain.

The same arguments can be raised against solar and wind power. It takes more energy to mine and refine the materials than the equipment generate since they generate the electricity when they want, not when the need is there.

Are we doomed? Not at all. As oil and gas is becoming more and more expensive, especially if the Middle East cuts off its supply, we should build up the nuclear power plants, not with old Uranium based nuclear plants with all their nuclear waste, but with small, distributed thorium based plants. They have 0.01% as much nuclear waste as uranium based plants and are earthquake safe and much less vulnerable to sabotage. They also respond much better to demand fluctuations. As the plants would be more distributed it would lessen the need for an expanded electric grid, which is unbelievably vulnerable to sabotage. The long and short of it: Go Thorium and then Electric cars!