No need for evacuation zones, can be placed near urban areas. Molten Salt Thorium reactors operate at atmospheric pressure and have a very high negative temperature coefficient, so there is no risk for a boil-over. They are easily made earthquake-safe and no pressure vessel is needed. This will greatly simplify the approval process, no need for elaborate evacuation plans have to be developed. Since the Three Mile Island accident there was a thirty year gap in approvals for new nuclear plants. The “not in my backyard ” mentality reigned supreme, and delay and denial was the rule of the years. But the lawyers still got their share, leading to escalating cost for new nuclear power. In the early days of nuclear power France took the approach of building some of their nuclear plants near the Belgian and German border, so they only had to develop half of an evacuation plan, leaving the other half to their ‘understanding’ neighbors. It also lead to placing the nuclear plants where there was least popular resistance, not where they were needed the most, adding to the strain and efficiency losses on the electric grid. Liquid Fluoride Thorium Reactors have one additional advantage. They do not need access to water, so they can be placed even in desert areas. When a coal fired, or even a natural gas fired plant is decommissioned, it can be replaced in the same place, the electric connections are already there, so there is no need to go through lengthy and costly eminent domain processes ‘to acquire more land, or even expand the electric grid for that location. Thorium power is clean power.
Tag: Earthquake safe
Why Thorium? 11. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.
Molten Salt Thorium Reactors are earthquake safe. Thorium reactors have a very simple and compact design where gravity is the only thing needed to stop the nuclear reaction. Conventional nuclear reactors depend on external power to shut down after a SCRAM, where poison rods fall down to halt the reaction. The next figure shows the concept of a Thorium reactor.

The idea is to empty the fissile U-233 core through gravity alone. All that is needed is a melt-plug that is constantly cooled by cold air. In an earthquake or complete electric failure the cold air flow automatically shuts off, and since the fuel is already molten, it will melt the plug, and the molten fluid will run down into channels like pig-iron into heat exchangers that absorb the residual heat.


As we can see the reactor hardened structure is compact, and can be completely earthquake and tsunami proof. What can be sheared off are the steam pipes and external power, but even then the reactor shutdown will be complete safe without any additional power.
One of the advantages of the LFTR reactor is that the fissile compartment is always kept just above critical point for needed power delivery. This means, once it starts draining, the fission process ends immediately. The only nuclear reaction remaining is that the Protactinium generated in the fertile blanket and separator gets converted to U-233 over time, but the amounts are so small that it is always in the safe range.
The case for Thorium. 9. Liquid Fluoride Thorium Reactors are earthquake safe, only gravity needed for safe shutdown.
Molten Salt Thorium Reactors are earthquake safe. Thorium reactors have a very simple and compact design where gravity is the only thing needed to stop the nuclear reaction. Conventional nuclear reactors depend on external power to shut down after a SCRAM, where poison rods fall down to halt the reaction. The next figure shows the concept of a Thorium reactor.
The idea is to empty the fissile U-233 core through gravity alone. All that is needed is a melt-plug that is constantly cooled by cold air. In an earthquake or complete electric failure the cold air flow automatically shuts off, and since the fuel is already molten, it will melt the plug, and the molten fluid will run down into channels like pig-iron into heat exchangers that absorb the residual heat.

As we can see the reactor hardened structure is compact, and can be completely earthquake and tsunami proof. What can be sheared off are the steam pipes and external power, but even then the reactor shutdown will be complete safe without any additional power.
The need to develop Thorium based Nuclear Energy as the major electric energy supply. 8. Molten Salt Thorium Reactors are earthquake safe.
Molten Salt Thorium Reactors are earthquake safe. Thorium reactors have a very simple and compact design where gravity is the only thing needed to stop the nuclear reaction. Conventional nuclear reactors depend on external power to shut down after a SCRAM, where poison rods fall down to halt the reaction. The next figure shows the concept of a Thorium reactor.
The idea is to empty the fissile U-233 core through gravity alone. All that is needed is a melt-plug that is constantly cooled by cold air. In an earthquake the cold air flow automatically shuts off, and since the fuel is already molten, it will then run down into channels like pig-iron into cooling heat exchangers with water supplied through gravity alone. 
As we can see the reactor hardened structure is compact, and can be completely earthquake and tsunami proof. What can be sheared off are the steam pipes and external power, but the reactor shutdown will complete safely without additional power, even if the earthquake is so bad the reactor is broken into pieces.
